Introduction to Monte Carlo (MC) methods
Why Scientists like to gamble
Overview

• Integration by random numbers
 – Why?
 – How?

• Uncertainty, Sharply peaked distributions
 – Importance sampling

• Markov Processes and the Metropolis algorithm

• Examples
 – statistical physics
 – finance
 – weather forecasting
Integration – Area under a curve

Tile area with strips of height $f(x)$ and width δx

Analytical:
$\delta x \rightarrow dx \rightarrow 0$

Numerical: integral replaced with a sum.

Uncertainty depends on size of δx (N points) and order of scheme, (Trapezoidal, Simpson, etc)
Multi-dimensional integration

1d integration requires N points

2d integration requires N^2

Problem of dimension m requires N^m

Curse of dimensionality
Calculating π by MC

Area of circle = πr^2
Area of unit square, $s = 1$
Area of shaded arc, $c = \pi/4$
c/s = $\pi/4$

Estimate ratio of shaded to non-shaded area to determine π
The algorithm

• \(y = \text{rand}() / \text{RAND_MAX} \) // float \{0.0:1.0\}
• \(x = \text{rand}() / \text{RAND_MAX} \)
• \(P = x^2 + y^2 \) // \(x^2 + y^2 = 1 \) eqn of circle
• If \(P \leq 1 \)
 – isInCircle
• Else
 – IsOutCircle
• \(\pi = 4 \times \text{isInCircle} / (\text{isOutCircle} + \text{isInCircle}) \)
π from 10 darts

π = 2.8
π from 100 darts

π = 3.0
\[\pi = 3.12 \]
Estimating the uncertainty

- **Stochastic method**
 - Statistical uncertainty

- **Estimate this**
 - Run each measurement 100 times with different random number sequences
 - Determine the variance of the distribution

\[\sigma^2 = \left(\bar{x} - x \right)^2 / k \]

- **Standard deviation is** \(\sigma \)
- **How does the uncertainty scale with** \(N \), **number of samples**
Uncertainty versus N

- Log-log plot
 \[y = ax^b \]
 \[\log y = \log a + b \log x \]
- Exponent b, is gradient
- $b \approx -0.5$
- Law of large numbers and central limit theorem

\[\Delta \sim 1/\sqrt{N} \]

True for all MC methods
More realistic problem

• Imagine traffic model
 – can compute average velocity for a given density
 – this in itself requires random numbers ...

• What if we wanted to know average velocity of cars over a week
 – each day has a different density of cars (weekday, weekend, ...)
 – assume this has been measured (by a man with a clipboard)

<table>
<thead>
<tr>
<th>Density</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0.7</td>
<td>2</td>
</tr>
</tbody>
</table>
Expectation values

• Procedure:
 – run a simulation for each density to give average car velocity
 – compute average over week by weighting by probability of that density

 – i.e. velocity = 1/7 * (4 * velocity(density = 0.3) + 1 * velocity(density = 0.5) + 2 * velocity(density = 0.7))

• In general, for many states x_i (e.g. density) and some function $f(x_i)$ (e.g. velocity) need to compute expectation value $<f>$

\[
\sum_{1}^{N} p(x_i) * f(x_i)
\]
Continuous distribution

probability of occurrence

density of traffic
Aside: A highly dimensional system
A high dimensional system

- 1 coin has 1 degree of freedom
 - Two possible states Heads and Tails
- 2 coins have 2 degrees of freedoms
 - Four possible micro-states, two of which are the same
 - Three possible states 1*HH, 2*HT, 1*TT
- n coins have n degrees of freedom
 - \(2^n\) microstates: n+1 states
 - Number of micro-states in each state is given by the binomial expansion coefficient

\[
\Omega = 2^n = \sum_{r=0}^{n} r \binom{n}{r} H^r T^{n-r}
\]

\[
r \binom{n}{r} = \frac{n!}{r!(n-r)!}
\]
Highly peaked distribution
Highly peaked distribution

![Probability distribution graph](image)

- Fraction of max number of heads
- Fraction of heads
100 Coins

- 96.48% of all possible outcomes lie between 40 – 60 heads
Importance Sampling (i)

- The **distribution** is often sharply peaked
 - especially high-dimensional functions
 - often with fine structure detail
- Random sampling
 - $p(x_i) \sim 0$ for many x_i
 - N large to resolve fine structure
- Importance sampling
 - generate **weighted distribution**
 - proportional to probability
Importance Sampling (ii)

- With random (or uniform) sampling

\[\langle f \rangle = \sum_{1}^{N} p(x_i) \cdot f(x_i) \]

 - but for highly peaked distributions, \(p(x_i) \sim 0 \) for most cases
 - most of our measurements of \(f(x_i) \) are effectively wasted
 - large statistical uncertainty in result

- If we generate \(x_i \) with *probability proportional* to \(p(x_i) \)

\[\langle f \rangle = \frac{1}{N} \sum_{1}^{N} f(x_i) \]

 - all measurements contribute equally

- But how do we do this?
Hill-walking example

• Want to spend your time in areas proportional to height $h(x)$

 – walk randomly to explore all positions x_i
 – if you always head up-hill or down-hill
 – get stuck at nearest peak or valley
 – if you head up-hill or down-hill with equal probability
 – you don’t prefer peaks over valleys

• Strategy
 – take both up-hill and down-hill steps but with a preference for up-hill
• Generate samples of \(\{x_i\} \) with probability \(p(x) \)
• \(x_i \) no longer chosen independently
• Generate new value from old – evolution
 \[
x_{i+1} = x_i + \delta x
\]

• Accept/reject change based on \(p(x_i) \) and \(p(x_{i+1}) \)
 – if \(p(x_{i+1}) > p(x_i) \) then accept the change
 – if \(p(x_{i+1}) < p(x_i) \) then accept with probability \(\frac{p(x_{i+1})}{p(x_i)} \)

• Asymptotic probability of \(x_i \) appearing is proportional to \(p(x) \)
• Need random numbers
 – to generate random moves \(\delta x \) and to do accept/reject step
Markov Chains

• The generated sample forms a Markov chain

• The update process must be ergodic
 – Able to reach all \(x \)
 – If the updates are non-ergodic then some states will be absent
 – Probability distribution will not be sampled correctly
 – computed expectation values will be incorrect!

• Takes some time to equilibrate
 – need to forget where you started from

• Accept / reject step is called the Metropolis algorithm
Markov Chains and Convergence

\[\langle f \rangle = \frac{1}{10} \sum_{i=4}^{13} f(x_i) \]
Statistical Physics

• Many applications use MC
• Statistical physics is an example
• Systems have extremely high dimensionality
 – e.g. positions and orientations of millions of atoms
• Use MC to generate “snapshots” or configurations of the system
• Average over these to obtain answer
 – Each individual state has no real meaning on its own
 – Quantities determined as averages across all the states
MC in Finance

• Used to price *options*

• An option is a *contract*, holder has the *right*
 – buy an asset – *call*
 – sell an asset – *put*
 – at some time in the future (T)
 – For a predetermined price (*strike* price) \(X \)

• Terminal pay off for the holder is then

\[
\max(\pm(S_T - X), 0)
\]

 – where \(S_T \) is the price of the underlying asset at time \(T \)
 – \(\pm \) call/put

• How much should the option cost?
MC in Finance II

- Price model called Black-Scholes equation
 - Partial differential equation
 - Based on geometric brownian motion (GMB) of underlying asset

- Assumes a “perfect” market
 - Markets are not perfect, especially during crashes!
 - Many extensions
 - Area of active research

- Use MC to generate many different GMB paths
 - Statistically analyse ensemble
Image taken by NASA’s Terra Satellite
7th January 2010

Britain in the grip of a very cold spell of weather
NWP in the UK

• Weather forecasts used by the media in the UK (e.g. BBC news) are generated by the UK Met office
 – Code is called the Unified Model
 – Same code runs climate model and weather forecast
 – Can cover the whole globe

• Newest supercomputer
 – Cray XC40
 – almost half a million processor-cores
 – weighs 140 tonnes

Initial conditions and the Butterfly effect

- The equations are extremely sensitive to initial conditions
 - Small changes in the initial conditions result in large changes in outcome

- Discovered by Edward Lorenz *circa* 1960
 - 12 variable computer model
 - Minute variations in input parameters
 - Resulted in grossly different weather patterns

- The Butterfly effect
 - The flap of a butterfly’s wings can effect the path of a tornado
 - My prediction is wrong because of effects too small to see
Chaos, randomness and probability

• A Chaotic system evolves to very different states from close initial states
 – no discernible pattern

• We can use this to estimate how reliable our forecast is:
 • Perturb the initial conditions
 – Based on uncertainty of measurement
 – Run a new forecast
 • Repeat many times (random numbers to do perturbation)
 – Generate an “ensemble” of forecasts
 – Can then estimate the probability of the forecast being correct

• If we ran 100 simulations and 70 said it would rain
 – probability of rain is 70%
 – called ensemble weather forecasting
Optimisation Problems

• Optima of function rather than averages
• Often need to minimise or maximise functions of many variables
 – minimum distance for travelling salesman problem
 – minimum error for a set of linear equations
• Procedure
 – take an initial guess
 – successively update to progress towards solution
• What changes should be proposed?
 – could reduce/increase the function with each update (steepest descent/ascent) ...
 – ... but this will only find the local minimum/maximum
Stochastic Optimisation

• Add a random component to updates
• Sometimes make "bad" moves
 – possible to escape from local minima
 – but want more up-hill steps than down-hill ones
• Hill-walking example
 – find the highest peak in the Alps by maximising $h(x)$
Simulated Annealing

- Monte Carlo technique applied to optimisation
- Analogy with Metropolis and Statistical Mechanics
- Initial “high-temperature” phase
 - accept both up-hill and down-hill steps to explore the space
- Intermediate phase
 - start to prefer up-hill steps to look for highest mountain
- Final “zero-temperature” phase
 - only accept up-hill steps to locate the peak of the mountain
- A lot of freedom in how you vary the temperature ...
Summary

• Random numbers used in many simulations

• Mainly to efficiently sample a large space of possibilities

• One state generated from another: Markov Chain
 – Metropolis algorithm gives a guided random walk

• Real simulations can require trillions of random numbers!
 – parallelisation introduces additional complexities ...