Application of CP2K to ice problems
Ice phase diagram

15 known crystalline ice phases

Several amorphous forms (e.g. see Martonak et al. JCP 2005)

Many phases are order/disorder pairs e.g. Ih/XI, V/XIII, VII/VIII

XII found in 1998, 3 further phases reported 2006-2009
Why ice is like an old mattress

Vacancies in ice

Bulk vacancy energy constant $0.74\text{eV} \pm 0.025\text{eV}$

Surface vacancy energy varies by $\sim 0.8\text{eV}$ and $\sim 0.5\text{eV}$ in outermost layer
Dipoles in perfect ice

Dipole variance is an intrinsic property of crystalline ice proton disordered phases
Dipole moment correlated with vacancy energy
Why does this variance arise?

- Each molecular dipole sits in a frustrated lattice exhibiting orientational disorder.
- In the bulk, due to proton disorder and the symmetry of oxygen network, the molecule feels an average field.
- At the surface, the symmetry is lowered and local environment has a strong influence on the local ESP.
- Generic property - e.g. spin ice, hydrates.

As part of this study, ADMM was used to compute PBE0 dipole moments on 288 molecule cells with an overhead 100% w.r.t PBE.
Consequences

- Around 10% of surface sites are comparatively very weakly bound
- At low temperature admolecules formed (proto-QLL)
- All vacancy energies lowered upon vacancy-admolecule formation
- Influence on pre-melting and reaction chemistry
The ice XV problem

see The polymorphism of ice: five unresolved questions, Salzmann et al., PCCP, 2011

What Governs the Proton Ordering in Ice XV?
Kaushik D. Nanda and Gregory J. O. Beran*
Department of Chemistry, University of California, Riverside, California 92521, United States

ABSTRACT: Powder neutron diffraction and Raman spectroscopy experiments for ice XV, the recently discovered proton-ordered polymorph of ice VI, suggest that the protons arrange in an antiferroelectric structure with $P\overline{1}$ symmetry, contrary to several density functional theory predictions of a ferroelectric Cc structure. Here, we find that higher-level fragment-based second-order perturbation theory (MP2) and coupled cluster theory (CCSD(T)) electronic structure calculations predict that the experimentally proposed proton ordering is indeed slightly more stable than the other possible structures. These calculations reveal a close competition between the structure with the strongest local hydrogen bonding (Cc) and the one with the most favorable “delocalized” hydrogen bond cooperativity effects ($P\overline{1}$), with the latter being preferred by \sim0.4 kJ/mol per molecule. The results reiterate the importance of viewing ice networks as a whole instead of focusing on pairwise hydrogen-bonding interactions.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

Ice XV/VI have the largest variation in hydrogen bond angle of any phase.

Problem solved?
Key ice XV structures

2Cl

9A2
Accuracy of CP2K

Largest discrepancy 0.06 kJ/mol

GPW approach very comparable with full PW
Varying HF and vdW does not change the order of stability.
RI-MP2

&XC
&XC_FUNCTIONAL NONE
&END XC_FUNCTIONAL
&HF
 FRACTION 1.0
 &SCREENING
 EPS_SCHWARZ 1.0E-8
 SCREEN_ON_INITIAL_P FALSE
 &END SCREENING
 &INTERACTION_POTENTIAL
 POTENTIAL_TYPE TRUNCATED
 CUTOFF_RADIUS 6.55
 T_C_G_DATA t_c_g.dat
 &END
 &MEMORY
 MAX_MEMORY 1800
 &END
&END HF
&WF_CORRELATION
 METHOD RI_MP2_GPW
 &WFC_GPW
 CUTOFF 300
 REL_CUTOFF 50
 EPS_FILTER 1.0E-12
 EPS_GRID 1.0E-8
 &END
 MEMORY 1800
 NUMBER_PROC 24
&END
&END XC

&SUBSYS
&CELL
 ABC [angstrom] 4.388266 7.634326 7.182104
 MULTIPLE_UNIT_CELL 3 2 2
&END CELL
&TOPOLOGY
 COORD_FILE_NAME hex.xyz
 COORD_FILE_FORMAT XYZ
 MULTIPLE_UNIT_CELL 3 2 2
&END TOPOLOGY
&KIND H
 BASIS_SET cc-TZ
 RI_AUX_BASIS_SET RI_TZ
 POTENTIAL GTH-HF-q1
&END KIND
&KIND O
 BASIS_SET cc-TZ
 RI_AUX_BASIS_SET RI_TZ
 POTENTIAL GTH-HF-q6
&END KIND
&END SUBSYS

96 molecules
1078s on 3840 processors (Archer)
RI-MP2 results

2048 hybrid nodes: NVIDIA-Tesla-K20X graphical processing unit and 8 Intel-Xeon-E5 processors. 2048 GPUs, 16384 CPUs (organized as 4096x4 MPIxOMP). On average the full cell optimization is converged in 20 steps. Average Timing per step: 390 s, Average Timing per step, RI-MP2 part: 320 s

$9A2 = Cc$ most stable

Theory still predicts exptl (2Cl) structure to be metastable
dRPA results

$O(N^4)$

<table>
<thead>
<tr>
<th>Basis Functions</th>
<th>Machine</th>
<th>Timing (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Auxiliary</td>
<td>Num Hyb Nodes</td>
</tr>
<tr>
<td>cc-TZ</td>
<td>4560</td>
<td>10880</td>
</tr>
<tr>
<td>cc-QZ</td>
<td>9120</td>
<td>19040</td>
</tr>
<tr>
<td>cc-5Z</td>
<td>16000</td>
<td>29600</td>
</tr>
</tbody>
</table>
A possible new ice I phase?

• Work esp. by Ben J. Murray et al. (Leeds) (e.g. *Nature*, 2005) has highlighted the potential importance of cubic ice.

• How trustworthy are potential models for modelling cubic ice and nucleation? (cubic ice typically formed in brute force crystallisation studies despite being metastable w.r.t hexgonal ice)

• Assess proton ordering to establish any intrinsic bias (using DFT as a benchmark)
Comparing Ih and Ic

2 clear favoured configurations

Xlh

Xlc
A possible new ice phase?

XIh

XIc

Structures are isoenergetic

XIc a possible competing phase?

Table 3 Comparison of ice XIh and ice XIc energies and structures obtained with VASP using hard PAW potentials and DMC

<table>
<thead>
<tr>
<th>Density functional</th>
<th>Cohesive energy/kJ mol(^{-1})</th>
<th>Volume/H(_2)O/Å(^3)</th>
<th>O-HO bond angle (°)</th>
<th>(\Delta H_{c->l}/J) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ice XIh</td>
<td>Ice XIc</td>
<td>Ice XIh</td>
<td>Ice XIc</td>
</tr>
<tr>
<td>PBE</td>
<td>-61.312</td>
<td>-61.359</td>
<td>30.41</td>
<td>30.35</td>
</tr>
<tr>
<td>optPBE-vdW</td>
<td>-65.388</td>
<td>-65.359</td>
<td>31.58</td>
<td>31.53</td>
</tr>
<tr>
<td>PBE0</td>
<td>-62.630</td>
<td>-62.684</td>
<td>30.02</td>
<td>30.17</td>
</tr>
<tr>
<td>DMC</td>
<td>-57.80 ± 0.17</td>
<td>-57.84 ± 0.22</td>
<td>31.18 ± 0.22</td>
<td>31.28 ± 0.31</td>
</tr>
</tbody>
</table>

Z Raza et al., PCCP, 2011
Ice XIIa/XIIc revisited

PBE

-1655.6800

MP2

\(~60\text{J/mol}\)

-1650.8400

RPA

\(~40\text{J/mol}\)

-1663.760

XIIh has an extra molecule in the second coordination shell - vdW stabilised

Mauro del Ben, Joost VandeVondele, BS, Christoph Salzmann unpublished results
Acknowledgements

Mauro del Ben, U Zurich
Joost VandeVondele, ETH Zurich
Christoph Salzmann, UCL

EPSRC