HPC Architectures

Types of resource currently in use
Outline

• Shared memory architectures
• Distributed memory architectures
• Distributed memory with shared-memory nodes
• Accelerators
• What is the difference between different Tiers?
 • Interconnect
 • Software
 • Job-size bias (capability)
Shared memory architectures

Simplest to use, hardest to build
Symmetric Multi-Processing Architectures

- All cores have the same access to memory
Non-Uniform Memory Access Architectures

- Cores have faster/wider access to local memory
Shared-memory architectures

• Most computers are now shared memory machines due to multicore
• Some true SMP architectures…
 • *e.g.* BlueGene/Q nodes
• …but most are NUMA
 • Program NUMA as if they are SMP – details are hidden from the user.
• Difficult to build shared-memory systems with large core numbers (> 1024 cores)
 • Expensive and power hungry
 • Some systems manage by using software to provide shared-memory capability
Distributed memory architectures

Clusters and interconnects
Distributed-Memory Architectures
Distributed-memory architectures

• Each self-contained part is called a node.
• Almost all HPC machines are distributed memory in some way
 • Although they all tend to be shared-memory within a node.
• The performance of parallel programs often depends on the interconnect performance
 • Although once it is of a certain (high) quality, applications usually reveal themselves to be CPU, memory or IO bound
 • Low quality interconnects (e.g. 10Mb/s – 1Gb/s Ethernet) do not usually provide the performance required
 • Specialist interconnects are required to produce the largest supercomputers. e.g. Cray Aries, IBM BlueGene/Q
 • Infiniband is dominant on smaller systems.
Distributed/shared memory hybrids

Almost everything now falls into this class
Hybrid Architectures
Hybrid architectures

- Almost all HPC machines fall in this class
- Most applications use a message-passing (MPI) model for programming
 - Usually use a single process per core
- Increased use of hybrid message-passing + shared memory (MPI+OpenMP) programming
 - Usually use 1 or more processes per NUMA region and then the appropriate number of shared-memory threads to occupy all the cores
- Placement of processes and threads can become complicated on these machines
Example: ARCHER

- ARCHER has two 12-way multicore processors per node
 - Each 12-way processor is made up of two 6-core dies
 - Each node is a 24-core, shared-memory, NUMA machine
Accelerators

How are they incorporated?
Including accelerators

- Accelerators are usually incorporated into HPC machines using the hybrid architecture model
 - A number of accelerators per node
 - Nodes connected using interconnects
- Communication from accelerator to accelerator depends on the hardware:
 - NVIDIA GPU support direct communication
 - AMD GPU have to communicate via CPU memory
 - Intel Xeon Phi communication via CPU memory
 - Communicating via CPU memory involves lots of extra copy operations and is usually very slow
Comparison of types

What is the difference between different tiers?
HPC Facility Tiers

- HPC facilities are often spoken about as belonging to Tiers

 Tier 0 – Pan-national Facilities

 Tier 1 – National Facilities

 Tier 2 – Regional Facilities

 Tier 3 – Institutional Facilities
Summary

- Vast majority of HPC machines are shared-memory nodes linked by an interconnect.
 - Hybrid HPC architectures – combination of shared and distributed memory
- Most are programmed using a pure MPI model (more later on MPI).
 - Does not really reflect the hardware layout
- Shared HPC machines span a wide range of sizes:
 - From Tier 0 – Multi-petaflops (1 million cores)
 - To workstations with multiple CPUs (+ Accelerators)