VOX-FE
A tale of two eCSEs

Neelofer Banglawala, Iain Bethune (EPCC)
Michael Fagan, Richard Holbrey (University of Hull)
Overview

- Background

- eCSE-01 – large scale voxel based modelling
 - VOX-FE 2.0

- eCSE-04 – new functionality for new communities
 - VOX-FE 3.0

- eCSE outcomes

- Summary
Background: bones

- Bone exists in a continual state of change
 - Bone remodelling via resorption and ossification
 - Peak growth in young adult life. Bone loss begins after age 35. By age 70, more than 30% of bone mass lost
 - Lack of exercise and disease cause loss and structural changes
- Bone is made up of different types of materials and has complex geometry
- How does bone respond to forces and constraints?
 - difficult to investigate this in vivo
Background : bones (cont.)

• Model bone as made up of millions of small cubic elements called voxels (finite elements)

• **VOX-FE** is a voxel-based finite element software suite for the analysis of bone models
 - Developed jointly by Michael Fagan’s Medical & Biological Engineering (University of Hull), Hull-York Medical School and EPCC
 - Consists of frontend GUI and backend linear solver
Background: legacy VOX-FE

- Prior to eCSE development work, VOX-FE could
 - handle models of ~20 million elements, max 4 material types
 - good scaling up to ~256 cores
- But for realistic bone modelling, need
 - to handle large, complex models of several hundred million (billion?) elements, arbitrary number of materials ...
 - good scaling to thousands (plus) cores in order to run large models on HPC capabilities
- Also want to investigate remodelling process, effect of muscle wrapping and much more...
eCSE-01 : VOX-FE 2.0

- Large scale voxel-based modelling
 - April 2014 to April 2015
 - Hull: Michael Fagan (PI), Richard Holbrey (tech)
 - EPCC: Iain Bethune (Co-PI), Neelofer Banglawala (tech)
- 15 PMs split between EPCC (7 PMs) and Hull (8 PMs)
 - WP1 – Develop PETSc-based linear solver to replace old solver
 - WP2 – Support for multi material-type models in the PETSc solver
 - WP3 – Initial implementation of adaptive remodelling
 - WP4 – GUI redevelopment with ParaView plugin for large models
- Travel budget for 2 face-to-face meetings
eCSE-04 : VOX-FE 3.0

- New functionality for new communities
 - e.g. palaeobiology community, for reconstruction of fossils
 - April 2015 to Feb 2016
- 9 PMs split between EPCC (3 PMs) and Hull (6 PMs)
 - WP1 – Solver improvements - load balancing with ParMETIS
 - WP2-4 – Muscle wrapping, self-tuning remodelling (and improved material definition mapping from CT image scan)
 - WP5 – Open source release (including user guide and tutorials)
- No face-to-face meetings – work packages assigned to either either EPCC or Hull
eCSE : Outcomes

- Hundred of millions of elements, on thousands of cores, arbitrary number of materials
- Full open source release – ported to SourceForge
 - VOX-FE centrally available on ARCHER as an ARCHER module
 - Tutorials and user guide
eCSE: outcomes (cont.)

Muscle wrapping

ParaView-based GUI

Remodelling

Muscle wrapping
eCSE : Outcomes (cont.)

- Overall financial saving/benefit ~10x for production jobs
- Produced final reports (including technical report)
- ARCHER white paper based on technical reports
 - http://archer.ac.uk/documentation/white-papers/
- ARCHER eCSE case study
- Webinar
 - https://www.youtube.com/watch?v=q7GD7Nv5LYs&feature=youtu.be
Summary

ARCHER eCSE programme provided opportunity for significant software development of VOX-FE, including new functionality that could potentially benefit a new user community.