
Python on ARCHER
Nick Johnson

CSE Team, EPCC

Overview

• Motivation

• What is available & where

• Running on ARCHER:

• on the login nodes

• on the PP/serial nodes

• on the compute nodes

• Adding your own modules

• “Gotchas”

• Scaling performance

• Where to get more help

• Questions

Motivation

• Why would you want to run an interpreted language like
Python on a supercomputer like ARCHER?

• You could do it all in C or Fortran

• Portability

• Ease of coding + testing

• Quick data analysis

• Pre and Post processing of data sets, input files

Disclaimer

• I’ll be using an unreleased module in this talk to illustrate
some points which I don’t recommend

• It’s python/2.7.6-experimental

• Eventually, these will become part of the python/2.7.6 module
so you will have access to them.

Running Python on ARCHER

• There are three places to run Python on ARCHER:
• Login nodes

• PP/serial nodes

• Compute nodes

• There are, just to add to the confusion, three version of
Python available on ARCHER
• 2.6.8

• 2.7.6 (default)

• 3.3.3

• 2.7.6 (the default) is automatically loaded as a module when
you login.

Login nodes

• You can run any of the versions of Python but we recommend
the default and only using the login node if it’s a tiny job.

eslogin006:> python helloworld.py

Hello, World

• Acceptable

eslogin006:> python monster_data_analysis.py

Res1 = 10

Res2 = 11

• Not acceptable – you will likely get an email about it from the
helpdesk!

PP nodes/serial nodes

• The best place to run your large analysis codes

• Surely you just do as you would do for any other PP job?

njohnso1@eslogin006:~/work> cat serialjob.pbs

#!/bin/bash –login

#PBS -l select=serial=true:ncpus=1

#PBS -l walltime=00:01:00#PBS -A z01-cse

Make sure any symbolic links are resolved to absolute path

export PBS_O_WORKDIR=$(readlink -f $PBS_O_WORKDIR)
Change to the directory that the job was submitted from

cd $PBS_O_WORKDIR

python helloworld.py

What just happened?

• The system version of python (2.6.8) has numpy installed

• The default version does not (but will soon)

• We didn’t load any modules in our job script so we used the
system python (/usr/bin/python)

• Always check by inserting which python into your job script
to be sure.

• The system python might change version with a CNL upgrade,
numpy might cease to be available.

• I recommend not using it.

• Explicitly load the default module in your script

Interactive jobs

• If you want to run interactive python but are worried about
saturating a login node, use an interactive job on the PP
nodes:

qsub -IVl select=serial=true:ncpus=1,walltime=1:0:0 -A
budget

• The same caveats about versions apply

Compute nodes

• Running python on the compute nodes is entirely possible

• But, if you only have a single process code, it might be a waste
of resources…

• Python is inherently single process and current threading
doesn’t help much other than for process control.

• StackOverflow has many, many articles on parallelism in Python
for the curious.

• Parallelism is possible on the compute (but not yet released
to users).

• The trick is to use mpi4py which allows python processes to
communicate using MPI.

What’s happening

• aprun starts N seperate processes, each of which is running an
instance of the python interpreter

• They communicate using MPI calls which are passed to a C
library which pass them down the stack, as with any other MPI
code.

• There is no magic involved – you can use other modules with
each of these processes, numpy for example…

Compiling & installing

• You are free to compile and install your own modules

• If it’s a pure python module (no C code) there will be no problem.

• If compilation is required, you should use PrgEnv-gnu

• I recommend using the setup.py that comes with the module:

python setup.py build options

python setup.py install –home=<dir>

• If you want to use your module on the compute nodes, you MUST
install to /work

• Don’t forget to set PYTHONPATH in your jobscript AND load the
default module if you built against that.

• Don’t forget that the CSE team are here to help you, for free!

• If you are struggling, get in touch via the helpdesk.

Gotchas

• Things to watch out for when using Python on ARCHER:

• The wrong Python – jobs submitted directly to the back-end (PP
or compute nodes) via qsub will not have the default python
loaded or have the correct PYTHONPATH set.

• #!/usr/bin/python

• This will load the system python and potentially cause pain

• Either change to #!/usr/bin/env python

• Or just comment it out and run as a script

• Cannot find modules

• If you have compiled and installed yourself, make sure you have
correctly set PYTHONPATH

• As best practice, echo it at the start of your jobscript along with the
output of which python

Scaling

• If your python code loads a lot of dynamic modules, ie shared
libraries that you call into, you will notice horrible scaling
performance.

• Really horrible

• The problem is that every process (say 1056) is trying to load
the same file from the file-system and this bottlenecks, badly.

• There are some solutions being trialled by the CSE team, but
they are not ready yet.

• If this is a pressing need for you, please get in touch

Scaling times

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128 256 512 1024 2048

Import time (s)

