
Welcome!

Virtual tutorial starts at 15:00 BST

PBS Job Submission
ARCHER Virtual Tutorial, Wed 9th April 2014

David Henty <d.henty@epcc.ed.ac.uk>

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must
distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

A day in the life of a PBS job

Batch script written

with a text editor

Submitted to the

PBS batch system

using qsub

Held in a queue

until able to run

Executed

Parallel jobs

launched from script

Completed and

job output written

Conception: batch script written …

• What is a batch script?

• a list of commands that are executed in order exactly as if you

typed them into the shell on the command line

• recommended to use bash

• Lines starting “#” are comments

• Except …
• #! is special to operating system

• #!/bin/bash --login # Run script as if a bash login session

• and
• #PBS is special to batch system

• #PBS –N myjob # Pass on as arguments to qsub

Great! So I can run the

batch script in advance to

check it works since it’s

just a bunch of commands

I’m afraid it’s not

that simple

Why? Your batch script runs on a

different computer in a

different environment

So some commands

that work on the

login nodes won’t

work under PBS?
Actually, some commands

that don’t work on the login

nodes will work under PBS

Birth: submitted to batch system

 user@archer> qsub –l select=6 myjob.pbs

 123456.sdb

• PBS takes a copy of your batch script and stores it

• ascertains resource requirements (e.g. no. of nodes)

• from command line arguments

• from #PBS lines

• other resources: -l walltime=03:00:00

• Job is queued until resources are available

• qstat job status set to “Q”

Great! So I can edit the

same job script and

resubmit straight away?

I’m afraid it’s not

that simple

Why?

You’re probably running an executable

from the script and it will see the

version that’s there at run time - OK for

a package but not if you’re recompiling

How does it decide

when to run my job?

It’s a balance of your requested

number of nodes and the

runtime compared to all the

other jobs in the system

So I should take care

when specifiying these?
Yes – don’t ask for huge

amounts of runtime if

you don’t need it!

Childhood: job script runs

• A set of compute nodes is reserved for your job
• but your batch script is actually executed on the MOM nodes

• backronym for “Machine Oriented Mini-server”

• qstat job status set to “R”

• The only way to access the compute nodes is with aprun

 #PBS –N myjob

 ...

 # Now run the job (I have used select=6)

 aprun –n 144 mympiprogram

login nodes

mom nodes

compute nodes

Operating

Systems

login nodes

mom nodes

compute nodes

Job flow

Adulthood: parallel jobs

• Compute nodes reserved for duration of job

• PBS doesn’t care if/how you use them!

• all commands executed on MOM node

• aprun on MOM node causes parallel jobs to run on compute nodes

• aprun does the following

• broadcasts the executable to all the compute nodes

• gathers the standard outputs from all the PEs

/home/
/work/

login nodes

mom nodes

compute nodes

File

Systems

Retirement: the end of your job
• Job finishes

• after the all the commands in script have been executed …

• … or the wallclock limit is exceeded

• All running parallel jobs are killed

• e.g. wallclock exceeded or aprun running in background (see later)

• Standard outputs collated

• written to myjob.o123456

• qstat job status set to “E” for some time (annoyingly)

• then disappears

aprun

• Can issue multiple aprun’s in a single job

• single job + many aprun’s may be better than many jobs

 #PBS –l select=6 # 6*24 = 144 cores

 ...

 aprun –n 144 mympiprogram dataset1

 aprun –n 144 mympiprogram dataset2

 aprun –n 144 mympiprogram dataset3

 ...

aprun is quite clever

• Can manage multiple parallel jobs simultaneously

• e.g. imagine we had 4 runs each using 72 cores

 #PBS –l select=6 # 6*24 = 144 cores

 ...

 aprun –n 72 mympiprogram dataset1

 aprun –n 72 mympiprogram dataset2

 aprun –n 72 mympiprogram dataset3

 aprun –n 72 mympiprogram dataset4

 # Incorrect! – all these run sequentially

Multiple aprun’s in the background (i)

 aprun –n 72 mympiprogram dataset1

 aprun –n 72 mympiprogram dataset2

 aprun –n 72 mympiprogram dataset3

 aprun –n 72 mympiprogram dataset4

Incorrect: “Job finishes after the all the

commands in script have been executed”.

Final aprun returns immediately, script

reaches end and finishes, aprun’s killed.

&

&

&

&

Multiple aprun’s in the background (ii)

 aprun –n 72 mympiprogram dataset1

 aprun –n 72 mympiprogram dataset2

 aprun –n 72 mympiprogram dataset3

 aprun –n 72 mympiprogram dataset4

Incorrect: script finishes when dataset4

finishes, but other datasets may still be

running at that time.

&

&

&

Multiple aprun’s in the background (iii)

 aprun –n 72 mympiprogram dataset1

 aprun –n 72 mympiprogram dataset2

 aprun –n 72 mympiprogram dataset3

 aprun –n 72 mympiprogram dataset4

 wait

Correct! “wait” blocks until all spawned

processes are complete

&

&

&

&

Task farms with aprun

 aprun –n 72 mympiprogram dataset1 &

 aprun –n 36 mympiprogram dataset2 &

 aprun –n 72 mympiprogram dataset3 &

 aprun –n 36 mympiprogram dataset4 &

 aprun –n 36 mympiprogram dataset5 &

 wait

 # ordering might be: 1, 2, 4, 3, 5

why can my job script

see my home files but

my MPI program can

only see my work files?

Because the script runs on the
MOM nodes which see /home

but MPI runs on the compute

nodes which only see /work

why can I store my MPI

executable in /home but

not its input files?

how do "interactive"
batch jobs work?

aprun broadcasts the executable

from /home to the compute nodes,

but not any dependent files

You are effectively

submitting a job which

runs a bash shell on the
MOM nodes

THE END

Goodbye!

Virtual tutorial has finished

