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Compiling multiple files 

• Compiling a simple code may be easy 

• cc program.c 

• cc –o program.exe program.c 

• All but simplest programs have more than one source file 

• cc –o program.exe file1.c file2.c file3.c … 

• This is wasteful so compile independently 

• cc –c file1.c 

• cc –c file2.c 

• …  

• Then link the object files 

• cc –o program.exe file1.o file2.o file3.o … 



The problems 

• What if I changed file2.c (and maybe other files …) 

• cc –c file2.c 

• cc –o program.exe file1.o file2.o file3.o … 

• an error-prone procedure! 

• Let’s be safe 

• rm *.o 

• cc –c file1.c 

• cc –c file2.c 

• … 

• cc –o program.exe file1.o file2.o file3.o … 

• wasteful again! 



More problems … 

• Source files often depend on others, e.g. include files 

• What if I edit include3.h 

• how do I know which files to recompile? 

• Recompiling all files is slow and unnecessary 

• Failing to recompile a file is disastrous 

• if your executable program does not reflect the current source code 

then debugging is impossible! 

• Need a tool which: 

• remembers dependencies between files (in human readable form) 

• recompiles all files that need to be updated 

• recompiles the minimum number of files 

 



Enter “make” 
• User specifies pairwise dependencies between files 

• “program2.o depends on program2.c” 

• “program2.c depends on include3.h” 

• Make works out the entire dependency tree 
 

• User specifies pairwise rules for resolving dependencies 

• “to update program2.o run the compiler on program2.c” 

• All this information is stored in a Makefile 

• tells make how to update files 
 

• How does make know when to update? 

• Make compares the date stamps of files 



Example 1: family1 
• Three types of file: 

• david.self 

• david.parent 

• david.child 

• Dependencies 

• self is younger than parent (created more recently) 

• child is younger than self 

• One final output file 

• davidfamily contains a date-ordered listing of the source files 

• if correct, order should be: parent; self; child. 

• Update rule is to copy: cp david.self david.child 



Example 2: family2 
• Imagine another family: sally 

 

• Wasteful to specify explict rules all over again 
• file1.o: file1.c 

• cc –c file1.c 

• file2.o: file2.c 

• cc –c file2.c 

• file3.o: file3.c 

• cc –c file2.c 

• … 

• Make also understands generic rules based on suffix 
• “this is how you create any child” 

• applies to david.child and sally.child 



Example 3: C traffic code 
• Illustrates use of variables 

• dependencies on header files 

• global change of C compiler by updating a single line 

• creation of one list of variables from another 

• Some magic variables 

• e.g. “The thing on left hand side of expression you’re working on” 
 

• Default rule 

• the first one in the Makefile, conventionally all 

• Dummy rules 

• housekeeping, e.g. delete junk with clean 

• to find out object files in variable OBJ, put in a rule to print it out 



Example 4: Fortran traffic code 

• The same format as the C version 

 

• Slightly complicated by use of modules 

 

• Possible to create relatively simple generic Makefiles 

• extend as appropriate for real cases 



The dirty linen 
• Tabs have magic significance in Makefiles 

 
• Can’t easily cut and paste them from the web! 

 

• GNU make spots this: 

  user@archer> make david.child  

  Makefile: *** missing separator (did you  

  mean TAB instead of 8 spaces?). Stop. 

 



Tricks and tips 

• You can make anything under control of make 

• e.g. make file.o 

 

• make –n prints out what make would do without doing it 

 

• make --debug prints out why make is doing what it does 

• can ask for more verbose output if you want 

 

• update rules can print debug info 

• echo “updating $@ from $<”; cp $< $@ 



Complications 

• Fortran modules 

• more sophisticated than C header files but harder to cope with 
 

• What if I have hundreds of header files 

• tools like “makedepend” can write the rules for you 
 

• GNU autotools (e.g. configure) produce Makefiles 

• unfortunately, not human understandable! 

 

• Make has many implicit (default) rules and variables 

• I prefer makefiles to be explicit and not assume these 



ARCHER 

• Want Makefile that works for all programming environments 

• but different compilers have different options 

 

• Can enquire environment variables within Makefile 

• e.g. whether $(CRAY_PRGENVCRAY)=loaded 

 

• Change of compiler module invisible to make 

• module switch PrgEnv-cray PrgEnv-intel 

• make clean 

• make 



Goodbye! 

 

Virtual tutorial has finished 


