
Welcome!

Virtual tutorial starts at 15:00 BST

Make and Compilation
ARCHER Virtual Tutorial, Wed 11th April 2017

David Henty <d.henty@epcc.ed.ac.uk>

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Compiling multiple files

• Compiling a simple code may be easy

• cc program.c

• cc –o program.exe program.c

• All but simplest programs have more than one source file

• cc –o program.exe file1.c file2.c file3.c …

• This is wasteful so compile independently

• cc –c file1.c

• cc –c file2.c

• …

• Then link the object files

• cc –o program.exe file1.o file2.o file3.o …

The problems

• What if I changed file2.c (and maybe other files …)

• cc –c file2.c

• cc –o program.exe file1.o file2.o file3.o …

• an error-prone procedure!

• Let’s be safe

• rm *.o

• cc –c file1.c

• cc –c file2.c

• …

• cc –o program.exe file1.o file2.o file3.o …

• wasteful again!

More problems …

• Source files often depend on others, e.g. include files

• What if I edit include3.h

• how do I know which files to recompile?

• Recompiling all files is slow and unnecessary

• Failing to recompile a file is disastrous

• if your executable program does not reflect the current source code

then debugging is impossible!

• Need a tool which:

• remembers dependencies between files (in human readable form)

• recompiles all files that need to be updated

• recompiles the minimum number of files

Enter “make”
• User specifies pairwise dependencies between files

• “program2.o depends on program2.c”

• “program2.c depends on include3.h”

• Make works out the entire dependency tree

• User specifies pairwise rules for resolving dependencies

• “to update program2.o run the compiler on program2.c”

• All this information is stored in a Makefile

• tells make how to update files

• How does make know when to update?

• Make compares the date stamps of files

Example 1: family1
• Three types of file:

• david.self

• david.parent

• david.child

• Dependencies

• self is younger than parent (created more recently)

• child is younger than self

• One final output file

• davidfamily contains a date-ordered listing of the source files

• if correct, order should be: parent; self; child.

• Update rule is to copy: cp david.self david.child

Example 2: family2
• Imagine another family: sally

• Wasteful to specify explict rules all over again
• file1.o: file1.c

• cc –c file1.c

• file2.o: file2.c

• cc –c file2.c

• file3.o: file3.c

• cc –c file2.c

• …

• Make also understands generic rules based on suffix
• “this is how you create any child”

• applies to david.child and sally.child

Example 3: C traffic code
• Illustrates use of variables

• dependencies on header files

• global change of C compiler by updating a single line

• creation of one list of variables from another

• Some magic variables

• e.g. “The thing on left hand side of expression you’re working on”

• Default rule

• the first one in the Makefile, conventionally all

• Dummy rules

• housekeeping, e.g. delete junk with clean

• to find out object files in variable OBJ, put in a rule to print it out

Example 4: Fortran traffic code

• The same format as the C version

• Slightly complicated by use of modules

• Possible to create relatively simple generic Makefiles

• extend as appropriate for real cases

The dirty linen
• Tabs have magic significance in Makefiles

• Can’t easily cut and paste them from the web!

• GNU make spots this:

 user@archer> make david.child

 Makefile: *** missing separator (did you

 mean TAB instead of 8 spaces?). Stop.

Tricks and tips

• You can make anything under control of make

• e.g. make file.o

• make –n prints out what make would do without doing it

• make --debug prints out why make is doing what it does

• can ask for more verbose output if you want

• update rules can print debug info

• echo “updating $@ from $<”; cp $< $@

Complications

• Fortran modules

• more sophisticated than C header files but harder to cope with

• What if I have hundreds of header files

• tools like “makedepend” can write the rules for you

• GNU autotools (e.g. configure) produce Makefiles

• unfortunately, not human understandable!

• Make has many implicit (default) rules and variables

• I prefer makefiles to be explicit and not assume these

ARCHER

• Want Makefile that works for all programming environments

• but different compilers have different options

• Can enquire environment variables within Makefile

• e.g. whether $(CRAY_PRGENVCRAY)=loaded

• Change of compiler module invisible to make

• module switch PrgEnv-cray PrgEnv-intel

• make clean

• make

Goodbye!

Virtual tutorial has finished

