
Enabling multi-node MPI parallelisation of the
LISFLOOD flood inundation model

ARCHER eCSE12-17

Dr. Arno Proeme (a.proeme@epcc.ed.ac.uk)
EPCC, University of Edinburgh

Dr. Declan Valters (British Geological Survey)
Prof. Simon Mudd (Geosciences, University of Edinburgh)

mailto:a.proeme@epcc.ed.ac.uk

Landscape evolution modelling & HPC

• Landscape evolution modelling community new to HPC
- Geomorphology (e.g. erosion, sedimentation, etc.)
- Hydrology (river flow, flooding, etc.)

• Growing availability of increasingly higher-resolution data
- Topographic data: e.g. LiDAR surface elevation maps, sub-metre resolution
- Weather/climate data: sensor data (e.g. rainfall) or simulation outputs

• Great potential from using HPC and high-resolution data:
- More spatially & temporally detailed processes
- Higher accuracy
- Larger domains
- Shorter time to solution (critical for impact of short-term forecasts)

• Most numerical landscape evolution modelling software
not ready to use HPC (limited parallelisation)

2

(CAESAR-)LISFLOOD
• Hydrodynamic model
- Simulates flooding in river catchments and floodplains,

erosion & sediment transport processes (optional)
- Can simulate timescales of hours to 100s of years (geomorphology)

• Enables flood inundation modelling & flood risk research
- NERC strategic research area

• Previously implemented in HAIL-CAESAR by D. Valters
(http://dvalts.io/HAIL-CAESAR/)
-OpenMP-parallelised – limited to single node

• Want to enable multi-node parallelisation of HAIL-CAESAR

3

http://dvalts.io/HAIL-CAESAR/

HAIL-CAESAR

4

From: Valters, D. A (2017). Modelling catchment sensitivity to
rainfall resolution and erosional parameterisation in
simulations of flash floods in the UK. PhD Thesis, University of
Manchester.

Simplified outline of HAIL-CAESAR program flow:
• Grey shaded boxes = OpenMP-parallelised code
• Rounded rectangles = input & output files
DEM = Digital Elevation Model (surface elevation, i.e.
topography data)

• Focus on multi-node parallelisation of
hydrology, i.e.
- flow routing (LISFLOOD)
- water depth update
- (water flux out)

• Erosion routines secondary
- no real additional complexity

HAIL-CAESAR
• 2D cellular automaton / stencil code:
- Elevation, water depth, other real-valued physical quantities (e.g.

fluxes) defined for each cell on a 2D grid

- Fixed update rule: new value of each main cell quantity depends
only on old value and four-point neighbour values (East, West,
North, South)

- Solves a simplified version of the Saint-Venant shallow water
equations for 2D depth-averaged flow, calculating water discharge
based on local gradients of water depth and bed elevation from
neighbouring grid cells
• takes into account e.g. surface & subsurface discharge, “soil moisture

store”, etc.

5

HAIL-CAESAR hydrology
water depth evolution for synthetic test case: persistent rainfall on central cell with flow routing

6

Realistic Digital Terrain
Boscastle River Valency (Cornwall): 12km2, 1m2 resolution

7

Multi-node parallelisation of LISFLOOD

• Regular grid stencil codes very well defined as a class of
problems, and parallelisation approaches well established
- domain decomposition + halo exchange

• Should be able to leverage existing solution instead of
creating (n+1)th reimplementation
- Library, DSL, …

• Considerations / requirements:
- Should be based on MPI parallelism
- Should incorporate dynamic load balancing (load distribution is

initially predictable but can change drastically due to flooding or
gradually over geomorphological timescales)

8

LibGeoDecomp (http://libgeodecomp.org/)

• C++ framework for parallelisation mainly of stencil codes
- Pure C++, not a DSL, customisable/extendable for Multiphysics
- Uses Boost library

• MPI based, alternatively also supports:
-OpenMP (single shared-memory node)
- or CUDA (single GPU)
- or HPX (also developed by Stellar group - http://stellar-group.org/)

• Handles domain decomposition, dynamic load balancing
- Recursive bisection, Hilbert & zip-zag space-filling curves,

Scotch graph-based partitioning, …

9

http://libgeodecomp.org/
http://stellar-group.org/

LibGeoDecomp (http://libgeodecomp.org/)

• Optimisations:
-Overlap computation & communication (latency hiding)
- Fast iteration through Arrays of Structs (actually stored as SoAs)

using instruction set-specific vectorization templates in LibFlatArray
(http://www.libgeodecomp.org/libflatarray.html)

• Tested on a number of large HPC systems, possible to
obtain good efficiency on (tens of) thousands of cores

• MPI IO-based checkpointing functionality

• Some parallel IO including for visualisation
- VisIt BOV & Silo formats

10

http://libgeodecomp.org/
http://www.libgeodecomp.org/libflatarray.html

HAIL-CAESAR original
• Read in elevation data from DEM file

• Store elevation and water depth grids in 2D double arrays

• LISFLOOD algorithm loops over arrays
(OpenMP-parallel if enabled)

• Done J

11

HAIL-CAESAR LibGeoDecomp port
• Define custom Cell class:
- Contains all member data types for each grid cell

• (e.g. double elevation, double water depth)
-Must contain update() function

• this is called by LibGeoDecomp during each time step
- Need enum member type to distinguish between different cell types

• (e.g. boundaries for application of boundary conditions)

• Define custom Initializer class:
-Must extend a suitable LibGeoDecomp base Initializer class
- Should define a grid() function, and use LibGeoDecomp’s

coordinate system syntax to initialise all grid cells (for serial
execution) or only those cells in each rank’s subgrid (for parallel
execution)

12

HAIL-CAESAR LibGeoDecomp port
• Declare an instance of a suitable LibGeoDecomp Simulator

(serial, parallel, …) and pass it instances of your custom
Initializer and a suitable LoadBalancer

• Commit LibGeoDecomp’s internal MPI Typemaps to
MPI_COMM_WORLD by calling initializeMaps()

• Generate an MPI Typemap for your Cell class,
and also commit this to MPI_COMM_WORLD
- see next slide

• Add any Writers to your Simulator, then let it run

13

LibGeoDecomp and Typemap Generation

• If you want to run in parallel with MPI you must generate
code and a header file describing an MPI Typemap for your
custom Cell class
- This must follow LibGeoDecomp’s conventions

• Use doxygen and scripts supplied by LibGeoDecomp (in
tools/typemapgenerator):
-Make sure your Cell class declares Typemaps as a friend class
- Run doxygen in your application dir to generate xml for your code
- Run typemapgenerator.rb (Ruby) script that parses xml and writes

typemaps.h & .cpp
-Make sure these are compiled and included when you build your code

14

Using LibGeoDecomp
• Heavily templated, multi-layered abstractions
- Not easy to understand how everything fits together

• API documentation available as reference (but not a good
starting point)

• Mini-application examples and unit tests help
- These only cover a few usage scenarios / functionality aspects
- Doing anything slightly different, needed to port existing

applications, immediately requires understanding a lot of the
underlying interlocking complexity

15

Using LibGeoDecomp
• MPI Typemap generator
- Not obvious from outset that needed! (discoverability curve)
- Encountered erronous typemap generation for enums (causing

mini-application example code not to work) – found workaround

• Not straightforward to efficiently read in and initialise
parallel simulation with real elevation data (DEM file)
- Each rank could read same file, but for large numbers of ranks this

will hit the filesystem hard serialising on single file,
bottlenecking/throttling the application strongly – need workaround

- Solution: read in file on rank 0 to initialise whole grid, write to file as
MPI IO snapshot, read in MPI IO snapshot to initialise each subgrid
in parallel

16

Results & follow on work
• Scaling results on ARCHER for realistic DEMs of varying

resolutions/sizes to follow in eCSE report

• Ported HAIL-CAESAR LibGeoDecomp code will be
available on GitHub (http://dvalts.io/HAIL-CAESAR/ or
linked to from there and from ARCHER website)

• Simple synthetic test cases not available in original HAIL-
CAESAR provide valuable debugging tool and insight into
LISFLOOD algorithm (extendable for erosion and
additional processes)

17

http://dvalts.io/HAIL-CAESAR/

Follow on work
• Introducing parallel netCDF-based IO in LibGeoDecomp

and thereby into HAIL-CAESAR
- Paves the way for efficient ingest of self-describing high-resolution

data, for initialisation and for ‘steering’ by feeding HPC simulation
live flooding data to improve short-term acute forecasting

- Equally enables efficient periodic output and storage of quantities
(time series) of interest

-Makes parallel netCDF IO functionality available to other
application developers using LibGeoDecomp

18

