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Useful Links
• Data Management Guide:

• http://www.archer.ac.uk/documentation/data-management/

• User Guide – ARCHER file systems:
• http://www.archer.ac.uk/documentation/user-

guide/resource_management.php#sec-3.3

• Globus Online:
• https://www.globus.org/



Spoilers!
• Combine small files into single larger archive files before 

transferring
• Use the right tool:

• Do you really need to use rsync?
• Is a parallel data transfer tool really required?

• Watch out for compression/encryption overheads
• Be aware of the weakest link in the transfer chain



Overview
• ARCHER/RDF file systems and layout
• Combining files – archiving
• Copying data: ARCHER to/from RDF
• Transferring data: on/off the RDF



ARCHER/RDF file systems



ARCHER/RDF file systems
/home: backed-up, NFS, available on login, serial and 
service nodes.

/work: not backed-up, Lustre parallel file system, 
available on login, serial, service and compute nodes.

RDF: backed-up only for disaster proofing (accidental 
deletion recovery not supported), GPFS, available on 
login nodes (and serial nodes).



Accessing the RDF
Directly mounted on ARCHER login and serial nodes at:

/epsrc
/nerc
/general

RDF additionally has its own Data Transfer Nodes (DTNs): 
dtn01.rdf.ac.uk, dtn02.rdf.ac.uk. Should be used when 
transferring between the RDF and a remote machine.

RDF also has a Data Analytic Cluster (DAC): login.rdf.ac.uk. 
Can use the scheduler here for long-running archiving and 
compression tasks



Combining files: archiving



Archiving – Motivation
More efficient use of the file system – single file requires fewer 
metadata operations to move/copy/access.

Can dramatically improve performance, especially with a large number 
of small files.

Example, 23GB of data = ~13000 32KB-5MB files:

$> time cp -r mydata /general/z01/z01/user/

real    59m47.096s
user    0m0.148s
sys     0m37.358s



Archiving – Motivation
Same files in an archive:

$> time cp mydata.tar /general/z01/z01/user/

real    3m3.698s
user    0m0.008s
sys     0m33.958s

Some initial overhead required for archive creation (~15 mins) but time 
saved on subsequent accesses.

Serial queues on ARCHER or RDF DAC should be used for any long 
running tasks.



Archiving – Utilities
Common archiving utilities on ARCHER/RDF:

• tar
• cpio
• zip

Some technical differences but choice mostly personal 
preference.

Generally recommend forgoing compression to speed up 
process but there is a compression/transfer time trade-off.



Archiving – tar creation
Ubiquitous “tape archive” format.

Common options:
-c create a new archive
-v verbosely list files processed
-W verify the archive after writing
-l confirm all file hard links are included in the archive
-f use an archive file

Example command:
tar -cvWlf mydata.tar mydata/



Archiving – tar extraction and verification
-x extract from an archive
tar -xf mydata.tar

-d “diff” archive file against a set of data
$> tar -df mydata.tar mydata
mydata/damaged_file: Mod time differs
mydata/damaged_file: Size differs

Note: tar archives do not store file checksums
Original data must be present during verification. 



Archiving – cpio creation
Archiving utility provided by most Linux distributions.

Common options:
-o create a new archive (copy-out mode)
-v verbose
-H use the given archive format (crc recommended)
No recursive flag – combine with “find” for directories

Example command:
find mydata/ | cpio -ovH crc > mydata.cpio



Archiving – cpio extraction and verification
-i extract from archive (copy-in mode)
-d create directories as necessary
cpio -id < mydata.cpio

--only-verify-crc verifies file checksums (skips extraction)
$> cpio -i --only-verify-crc < mydata.cpio
cpio: mydata/file: checksum error (0x1cd3cee8, 
should be 0x1cd3cf8f)
204801 blocks



Archiving – zip creation
Widely used and supported by most major systems, including 
current versions of Windows.

Common options:
-r recursively archive files and directories
-0-9 compression level (-0 recommended on ARCHER)

Example command:
zip -0r mydata.zip mydata

Note: zip files do not preserve hard links (data is copied).



Archiving – zip extraction and verification
Uses a separate utility for extraction.
unzip mydata.zip

-t test archive (zip file stores CRC values by default)
$> unzip -t mydata.zip
Archive: mydata.zip

testing: mydata/ OK
testing: mydata/file OK

No errors detected in compressed data of mydata.zip.



Copying data: ARCHER to/from RDF



Copying – Local Copy
cp –r source /epsrc/gid/gid/destination
Copying to the mounted RDF filesystem exactly the same as a 
normal copy between directories.

rsync –r source /epsrc/gid/gid/destination
Pro: rsync will not attempt to transfer files that already exist.
Con: this “mirroring” requires a large number of metadata 
operations, slowing performance.

Recommend rsync over cp when resynchronising a previously 
copied directory containing large files.

Usually best not to use “-z” (compression) option to rsync



Copying – Local Copy
Remember: must be done on a node where the two file 
systems are mounted:
• ARCHER login nodes
• ARCHER serial nodes



Transferring data: on/off RDF



Transfer – Utilities
Via SSH

• scp
• rsync

For very large transfers
• Globus Online
• (bbcp)



Copying – SSH Tools
For remote transfers DTNs should be used.

scp –r source user@dtn01.rdf.ac.uk:[destination]

Analogue of standard cp.

rsync –r –e ssh source 
user@dtn01.rdf.ac.uk:[destination]

Same utility for both local and remote transfers. 

Can also transfer data directly off ARCHER (without RDF) but need.to
use the serial queues/PP nodes as no DTNs available.



Copying – SSH Performance
All traffic encrypted – secure but performance penalty.
Different ciphers can be used to improve speed.
Algorithm “arcfour” usually fastest but least secure:

scp –c arcfour …

rsync –e “ssh –c arcfour” …

Lots of files also introduce a large overhead so combine 
using and archiving tool wherever possible.



Large Transfers – Globus Online

Register for an account at: 
https://www.globus.org/

• Endpoint for RDF is 
called Archer RDF or 
archer#rdf

• Use your RDF username 
and password to activate 
the endpoint



Large Transfers – Globus Online – Performance 

Uses GridFTP parallel file transfer to get best performance. 
Performance is limited by:
• Network bandwidth between two endpoints

• Often large for two servers at different locations
• Can be limited for transfers to local laptop/workstation (e.g. wifi, 1 

Gpbs ethernet)
• Storage access bandwidth

• Large for large files on parallel file system
• Small for many small files
• Can be small for local storage (e.g. single disk, over USB)



Summary



Summary
• RDF mounted directly on ARCHER login nodes. DTNs available for 

remote transfers
• Archiving improves performance for copying and transfer. Be aware of 

metadata operation bottleneck with lots of (small) files.
• Beware compression in rsync – can lead to bottleneck on CPU 

performance (avoid “-z” rsync option to mitigate)
• Beware encryption in ssh – can lead to bottleneck on CPU 

performance (use arcfour to mitigate)
• Globus Online can access best performance for large data transfers
• Be aware of the weakest link in your data transfer chain (e.g. low 

network bandwidth, low storage bandwidth)

For advice contact: support@archer.ac.uk


