
Good practice for
transferring data
Caoimhín Laoide-Kemp
Andy Turner
EPCC, The University of Edinburgh

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Useful Links
• Data Management Guide:

• http://www.archer.ac.uk/documentation/data-management/

• User Guide – ARCHER file systems:
• http://www.archer.ac.uk/documentation/user-

guide/resource_management.php#sec-3.3

• Globus Online:
• https://www.globus.org/

Spoilers!
• Combine small files into single larger archive files before

transferring
• Use the right tool:

• Do you really need to use rsync?
• Is a parallel data transfer tool really required?

• Watch out for compression/encryption overheads
• Be aware of the weakest link in the transfer chain

Overview
• ARCHER/RDF file systems and layout
• Combining files – archiving
• Copying data: ARCHER to/from RDF
• Transferring data: on/off the RDF

ARCHER/RDF file systems

ARCHER/RDF file systems
/home: backed-up, NFS, available on login, serial and
service nodes.

/work: not backed-up, Lustre parallel file system,
available on login, serial, service and compute nodes.

RDF: backed-up only for disaster proofing (accidental
deletion recovery not supported), GPFS, available on
login nodes (and serial nodes).

Accessing the RDF
Directly mounted on ARCHER login and serial nodes at:

/epsrc
/nerc
/general

RDF additionally has its own Data Transfer Nodes (DTNs):
dtn01.rdf.ac.uk, dtn02.rdf.ac.uk. Should be used when
transferring between the RDF and a remote machine.

RDF also has a Data Analytic Cluster (DAC): login.rdf.ac.uk.
Can use the scheduler here for long-running archiving and
compression tasks

Combining files: archiving

Archiving – Motivation
More efficient use of the file system – single file requires fewer
metadata operations to move/copy/access.

Can dramatically improve performance, especially with a large number
of small files.

Example, 23GB of data = ~13000 32KB-5MB files:

$> time cp -r mydata /general/z01/z01/user/

real 59m47.096s
user 0m0.148s
sys 0m37.358s

Archiving – Motivation
Same files in an archive:

$> time cp mydata.tar /general/z01/z01/user/

real 3m3.698s
user 0m0.008s
sys 0m33.958s

Some initial overhead required for archive creation (~15 mins) but time
saved on subsequent accesses.

Serial queues on ARCHER or RDF DAC should be used for any long
running tasks.

Archiving – Utilities
Common archiving utilities on ARCHER/RDF:

• tar
• cpio
• zip

Some technical differences but choice mostly personal
preference.

Generally recommend forgoing compression to speed up
process but there is a compression/transfer time trade-off.

Archiving – tar creation
Ubiquitous “tape archive” format.

Common options:
-c create a new archive
-v verbosely list files processed
-W verify the archive after writing
-l confirm all file hard links are included in the archive
-f use an archive file

Example command:
tar -cvWlf mydata.tar mydata/

Archiving – tar extraction and verification
-x extract from an archive
tar -xf mydata.tar

-d “diff” archive file against a set of data
$> tar -df mydata.tar mydata
mydata/damaged_file: Mod time differs
mydata/damaged_file: Size differs

Note: tar archives do not store file checksums
Original data must be present during verification.

Archiving – cpio creation
Archiving utility provided by most Linux distributions.

Common options:
-o create a new archive (copy-out mode)
-v verbose
-H use the given archive format (crc recommended)
No recursive flag – combine with “find” for directories

Example command:
find mydata/ | cpio -ovH crc > mydata.cpio

Archiving – cpio extraction and verification
-i extract from archive (copy-in mode)
-d create directories as necessary
cpio -id < mydata.cpio

--only-verify-crc verifies file checksums (skips extraction)
$> cpio -i --only-verify-crc < mydata.cpio
cpio: mydata/file: checksum error (0x1cd3cee8,
should be 0x1cd3cf8f)
204801 blocks

Archiving – zip creation
Widely used and supported by most major systems, including
current versions of Windows.

Common options:
-r recursively archive files and directories
-0-9 compression level (-0 recommended on ARCHER)

Example command:
zip -0r mydata.zip mydata

Note: zip files do not preserve hard links (data is copied).

Archiving – zip extraction and verification
Uses a separate utility for extraction.
unzip mydata.zip

-t test archive (zip file stores CRC values by default)
$> unzip -t mydata.zip
Archive: mydata.zip

testing: mydata/ OK
testing: mydata/file OK

No errors detected in compressed data of mydata.zip.

Copying data: ARCHER to/from RDF

Copying – Local Copy
cp –r source /epsrc/gid/gid/destination
Copying to the mounted RDF filesystem exactly the same as a
normal copy between directories.

rsync –r source /epsrc/gid/gid/destination
Pro: rsync will not attempt to transfer files that already exist.
Con: this “mirroring” requires a large number of metadata
operations, slowing performance.

Recommend rsync over cp when resynchronising a previously
copied directory containing large files.

Usually best not to use “-z” (compression) option to rsync

Copying – Local Copy
Remember: must be done on a node where the two file
systems are mounted:
• ARCHER login nodes
• ARCHER serial nodes

Transferring data: on/off RDF

Transfer – Utilities
Via SSH

• scp
• rsync

For very large transfers
• Globus Online
• (bbcp)

Copying – SSH Tools
For remote transfers DTNs should be used.

scp –r source user@dtn01.rdf.ac.uk:[destination]

Analogue of standard cp.

rsync –r –e ssh source
user@dtn01.rdf.ac.uk:[destination]

Same utility for both local and remote transfers.

Can also transfer data directly off ARCHER (without RDF) but need.to
use the serial queues/PP nodes as no DTNs available.

Copying – SSH Performance
All traffic encrypted – secure but performance penalty.
Different ciphers can be used to improve speed.
Algorithm “arcfour” usually fastest but least secure:

scp –c arcfour …

rsync –e “ssh –c arcfour” …

Lots of files also introduce a large overhead so combine
using and archiving tool wherever possible.

Large Transfers – Globus Online

Register for an account at:
https://www.globus.org/

• Endpoint for RDF is
called Archer RDF or
archer#rdf

• Use your RDF username
and password to activate
the endpoint

Large Transfers – Globus Online – Performance

Uses GridFTP parallel file transfer to get best performance.
Performance is limited by:
• Network bandwidth between two endpoints

• Often large for two servers at different locations
• Can be limited for transfers to local laptop/workstation (e.g. wifi, 1

Gpbs ethernet)
• Storage access bandwidth

• Large for large files on parallel file system
• Small for many small files
• Can be small for local storage (e.g. single disk, over USB)

Summary

Summary
• RDF mounted directly on ARCHER login nodes. DTNs available for

remote transfers
• Archiving improves performance for copying and transfer. Be aware of

metadata operation bottleneck with lots of (small) files.
• Beware compression in rsync – can lead to bottleneck on CPU

performance (avoid “-z” rsync option to mitigate)
• Beware encryption in ssh – can lead to bottleneck on CPU

performance (use arcfour to mitigate)
• Globus Online can access best performance for large data transfers
• Be aware of the weakest link in your data transfer chain (e.g. low

network bandwidth, low storage bandwidth)

For advice contact: support@archer.ac.uk

