

TPLS 3.0 and Its Use of PETSc

David Scott Edinburgh Parallel Computing Centre

Contributors

- Iain Bethune
- Toni Collis
- Lennon O'Naraigh
- David Scott
- Peter Spelt
- Prashant Valluri

Evaporating droplets J. Fluid Mech. (2015)

Funded by EPSRC through the eCSE programme

Portable, Extensible Toolkit for Scientific Computation,

PETSc: <u>https://www.mcs.anl.gov/petsc</u>

History of Public Releases

Year	Version	Notes
2013	1.0	Hand coded (generally J-SOR) solvers except for the (PETSc) pressure solver. Serial I/O.
2015	2.0	Parallel I/O (NetCDF). Introduced configuration files. 2D domain decomposition.
2017	3.0	3D domain decomposition. PETSc solvers available for the the momentum calculations. Different densities for the component fluids.

 Available from Sourceforge: <u>https://sourceforge.net/projects/tpls/</u> under a BSD-style licence.

TPLS 3.0 – Density Contrast Flows

- Rayleigh Taylor instability
 - Two layers of liquid with the upper being the denser.
- Stably stratified, parallel, two-phase flows
 - Two layers of fluid with the upper being the less dense.
 - The fluids are flowing in the same direction.
- Characteristics of the simulations:
 - Flows involving many length and time scales.
 - Flows with sharp changes in interfacial topologies.
 - Transient three-dimensional simulations required over long periods of time
- Require scalable code run at very high resolutions

TPLS 3.0: The Equations

Two-phase, incompressible, Navier–Stokes equations with interface capturing.

$$\rho(\phi)\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \frac{1}{Re}\nabla \cdot \left[\mu(\phi)(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})\right] + \mathbf{f}_{\mathrm{st}}(\phi) + \rho(\phi)\mathbf{g}$$

where $\nabla \cdot \mathbf{u} = \mathbf{0}$, g is gravity and ϕ is the interface capturing field.

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \mathbf{0}, \quad \mathbf{f}_{st} = \delta_{\epsilon}(\phi) \frac{\mathbf{1}}{\mathbf{W}\mathbf{e}} \hat{\mathbf{n}} \nabla \cdot \hat{\mathbf{n}}, \quad \hat{\mathbf{n}} = \frac{\nabla \phi}{|\nabla \phi|}.$$

TPLS 3.0: The Technicalities

Marker-and-cell discretisation: pressures, densities, viscosities and ϕ at cell centres, velocities at cell faces.

Finite volumes, with flux-conservative differencing for the momentum equation.

Momentum step: centred differences for the convective derivative, Crank-Nicholson treatment for diffusion, 3rd order Adams-Bashforth for the time evolution.

Projection method: momenta are updated first, followed by a correction step involving a pressure update, thereby enforcing incompressibility.

The levelset function, ϕ , is carried with the flow (3rd order WENO) but is corrected at each time step ('redistancing').

TPLS 3.0: Rayleigh-Taylor Instability

- Heavy fluid sitting on top of a light fluid (gravity acting downwards)
- System starts from rest with a sinusoidal perturbation to the interface
- Heavy fluid accelerates downwards forming complicated interfacial structures due to rollup of vorticity
- System parametrised by the Atwood number

$$At = (\rho_{heavy} - \rho_{light}) / (\rho_{heavy} + \rho_{light}),$$

- In simulations, $ho_{
m heavy}=3
ho_{
m light}$

TPLS 3.0: Rayleigh-Taylor Instability

See Z. Solomenko et al. (2017) Int J Multiphase Flow, 95, 235.

epcc

TPLS 3.0: Stratified Flows

- A pressure-driven channel flow with two stably stratified phases
- At high flow rates (Reynolds numbers), an unstable equilibrium sets in
- Interfacial waves develop and can evolve to breaking waves, ligaments, billows, droplets etc.
- The density ratio, r (bottom phase vs top phase) is a key parameter

TPLS 3.0: Stratified Flows

Interface shape evolution from DNS for a case at moderate density ratio, r = 10. Other parameters: $(m = 50, h_0 = 0.2, \mathcal{G} = 0.1, We = 10)$, and Re = 500.

How to Use TPLS

- Describe the initial configuration
 - initial_config.opt
- Generate the initial configuration
 - run ./create_initial_configuration
- Configure how the program works (non-PETSc options)
 - tpls_config.opt
- PETSc run-time configuration
 - .petscrc

initial_config.opt

- ## Domain grid
- # Number of grid points in X (I), Y (m) and Z (n) directions.
- maxl 257
- maxm 145
- maxn 153
- ## Interface detection method.
- # Options:
- # lsm level-set method (default)
- # dim diffuse interface method
- idm lsm
- ## Flow type.
- # Options:
- # channel channel flow
- # rti Rayleigh Taylor Instability
- flow_type channel

initial_config.opt (cont.)

- ## Fluid flow
- # Reynolds number.
- re 1.0
- # Viscosity and density of the lower fluid.
- mu_minus 1.0
- rho_minus 1.0
- # Viscosity and density of the upper fluid.
- mu_plus 1.0
- rho_plus 3.0
- # Interface height, or height of lower liquid layer, expressed as
- # a proportion where 0 <= height <= 1.
- height 0.5

initial_config.opt (cont.)

- # Pressure gradient.
- dpdl -1.0
- # Gravity.
- Grav 1.0
- gz -1.0
- # Surface tension scaling parameter.
- scap 0.01
- # Time step (>0).
- dt 0.0001
- # Smooth width scale factor.
- smooth_width_scale 1.5

tpls_config.opt

- ## Process grid
- # Number of processes in the X, Y and Z dimensions, which defines the
- # process grid which overlays the domain grid.
- # The following conditions need to be respected:
- # Number of processes available = num_procs_x * num_procs_y * num_procs_z
- # num_procs_x is a divisor of (maxl 1)
- # num_procs_y is a divisor of (maxm 1)
- # num_procs_z is a divisor of (maxn 1)
- # num_procs_x >= 1
- # num_procs_y >= 1
- # num_procs_z >= 1
- # TPLS will raise an error if these conditions do not hold.
- num_procs_x 16
- num_procs_y 6
- num_procs_z 8

tpls_config.opt (cont)

- ## Selection of PETSc or original equation solvers.
- # T or F for PETSc or original.
- petsc_solver_u T
- petsc_solver_v T
- petsc_solver_w T
- petsc_solver_p T
- ## Is a solver to be monitored?
- # T or F.
- u_monitoring_on F
- v_monitoring_on F
- w_monitoring_on F
- p_monitoring_on F

tpls_config.opt (cont)

- ## Original momentum equation solver configuration
- # Number of iterations in solvers for u, v and w velocities (>= 1).
- mom_u 30
- mom_v 30
- mom_w 30
- ## Level-set equation solver configuration
- # Number of iterations in solver (>= 1).
- levelset 10
- # Maxu
- maxu 10.0

tpls_config.opt (cont)

- ## TPLS operation
- # PHI channel .dat file output frequency (>= 1).
- phi_dat_frequency 1000
- # UVW channel .dat file output frequency (>= 1).
- uvw_dat_frequency 1000
- # Backup channel .dat file output frequency (>= 1).
- backup_frequency 1000
- # Backup files in netCDF hdf5 format (= T or F).
- backup_hdf5_format T
- # Number of timesteps (>= 1).
- num_timesteps 1000
- ## DIM equation solver configuration
- # Number of iterations
- max_iteration_dim 18

Run-Time Configuration of PETSc .petscrc

- -u_ksp_rtol 0.0000007
- -u_ksp_final_residual
- -v_ksp_rtol 0.000001
- -v_ksp_final_residual
- -w_ksp_rtol 0.000002
- -w_ksp_final_residual
- -p_ksp_rtol 0.00009
- -p_ksp_type minres
- -p_pc_type sor
- -p_pc_sor_omega 1.5
- -p_ksp_final_residual
- Note that one can configure the PETSc (Krylov) solvers individually through a prefix to the configuration options. For example the generic option ksp_rtol becomes u_ksp_rtol, etc. As we shall see, the prefixes are specified in the code.

Why Use PETSc

• PETSc provides support for structured grids.

٠	call DMDACreate3d(PETSC_COMM_WORLD,	&
٠	DM_BOUNDARY_PERIODIC,	&
٠	DM_BOUNDARY_PERIODIC,	&
٠	DM_BOUNDARY_NONE,	&
٠	DMDA_STENCIL_BOX,	&
٠	global_dim_x, global_dim_y, global_dim_z+2,	&
٠	<pre>num_procs_x, num_procs_y, num_procs_z,</pre>	&
٠	dof, stencil_width,	&
٠	petsc_x_lengths,	&
٠	PETSC_NULL_INTEGER,	&
٠	<pre>petsc_z_lengths_p,</pre>	&
٠	da_s, ierr)	

• This creates da_s which may then be used to create PETSc vectors.

Why Use PETSc (cont.)

- Two sorts of array may be created: global, distributed arrays and local arrays.
- call DMGetGlobalVector(da s, pres vec, ierr)
- call DMGetLocalVector(da_s, pres_lvec, ierr)
- A local vector includes room for the appropriate ghost (halo) points.
- It is simple to populate a local vector (including its halo points) given a global vector.
- call DMGlobalToLocalBegin(da_s, pres_vec, INSERT_VALUES, pres_lvec, ierr)
- call DMGlobalToLocalEnd(da_s, pres_vec, INSERT_VALUES, pres_lvec, ierr)
- Note the absence of MPI calls. The movement of data is done behind the scenes by PETSc.

Why Use PETSc (cont.)

- Distributed matrices may also be created from DMs and used in conjunction with KSPs to solve linear systems.
- call DMCreateMatrix(da_s, A, ierr)
- call compute_rhs_p(ksp_pres, b_vec, ierr)
- call compute_matrix_p(ksp_pres, A, A, ierr)
- call KSPSetOperators(ksp_pres, A, A, ierr)
- call KSPSolve(ksp_pres, b_vec, pres_vec, ierr)
- call MatDestroy(A, ierr)

This requires that a relationship has been established between the DM and the KSP.

Why Use PETSc (cont.)

- KSPs provide access to PETSc linear solvers. A KSP may be associated with a DM as illustrated here.
- call KSPCreate(PETSC_COMM_WORLD, ksp_u, ierr)
- call KSPSetOptionsPrefix(ksp_u, 'u_', ierr)
- call KSPSetFromOptions(ksp_u, ierr)
- call KSPSetComputeInitialGuess(ksp_u, set_initial_guess_u,

PETSC_NULL_OBJECT, ierr)

- call KSPSetDM(ksp_u, da_u, ierr)
- call KSPSetDMActive(ksp_u, PETSC_FALSE, ierr)
- One can see that a prefix has been associated with the KSP so that it can have its own run-time, configuration options.

TPLS 3.0 Performance

- 3D decomposition accelerates speed (2 x TPLS2.0 on 1,536 cores)
- Krylov solvers do not lead to an increase in performance but have different termination criteria
- Density contrast doubles the execution time
 Refer to the eCSE report for full performance
- Refer to the eCSE report for full performance analysis

Further Work

- Merge existing code on counter-current flows and droplet formation.
- Include heat transfer, mass transfer with reaction and interfacial phase change.
- Implement complex geometries.

