
Rupert Nash

r.nash@epcc.ed.ac.uk

1 / 27

C++ frameworks for portable performance

2 / 27

Introduction

Modern HPC systems usually have several levels of parallelism

Multiple nodes

Each with multi-core CPUs

Each with vector FPUs

Many have accelerators (GPUs) for offloading kernels

High FLOP/Watt

High bandwidth graphics memory.

Complexity of managing offloading and distinct memory spaces

3 / 27

Portable performance

Challenge: expose algorithms' parallelism in a way that maps to hardware,
with:

optimal performance

intuitive expression of algorithm

portability across different systems (Pure CPU, GPU, Xeon Phi, future?)

only one version of the code base

Or at least close!

4 / 27

Portable performance

Data
Where is the data? In which
memory space?

How is the data laid out? Array of
Structures or Structure of
Arrays?

Execution
Where is the computation to take
place?

How do parts relate?
for_each/reduce/etc

5 / 27

What do we need to control?

CUDA - NVIDIA only

OpenCL - NVIDIA, AMD, embedded GPU. CPU working, but performance
not great - quite low-level

OpenMP or OpenACC - Maybe eventually! Not quite flexible enough yet,
but OpenACC really only NV/AMD and OpenMP requires different
directives for CPU vs GPU

Your suggestions - ...

6 / 27

Why not just use...

This is an area of active research! Lots have been proposed. Few are used
outside of CS research.

You need to trust this has been tested and will be supported for the life of
your application.

You need compiler, debugger, libraries that work with it

You need to learn a new language.

Anyone who wants to maintain/extend your code needs to learn a new
language.

Using it on a new architecure may require convincing the compiler team
to port it for you.

7 / 27

What about parallel languages?

Practical lab had an example of implementing a matrix template class with
Morton order data layout:

8 / 27

C++ can help

We have seen how the standard template library makes many algorithms
available to us in a standard way.

std::for_each(data.begin(), data.end(),
 [](double& elem) {
 elem = DoSomething();
 }
}

These functions are implemented in standard C++ - you could write an
equivalent.

9 / 27

C++ can help

If InputIt is a random-access iterator (e.g. from a std::vector) then you could
use this to parallelise with OpenMP (v3 or greater)

template< class InputIt, class UnaryFunction >
void omp_for_each(InputIt first, InputIt last,
 UnaryFunction f) {
#pragma omp parallel for
 for(InputIt iter = first;
 iter < last; ++iter) {
 f(*iter);
 }
}

10 / 27

C++ can help

You can use this as a drop-in replacement for std::for_each:

omp_for_each(data.begin(), data.end(),
 [](double& elem) {
 elem = DoSomething();
 });

But this is just one thing on one method of parallelisation - we want more and
across all levels in a node, at least.

11 / 27

C++ can help

Fortunately a number of groups have done much of this work for us!

targetDP

Kokkos

RAJA

Many more that target a subset of platforms:

Thrust: CUDA specific containers and algorithms. Easy
interoperability with CUDA
http://docs.nvidia.com/cuda/thrust/index.html.
Hemi: CUDA only but hides much of the complexity of writing device
code https://github.com/harrism/hemi.
C++AMP - Microsoft developed language extension allowing you to
abstract the details writing code for execution on host or GPU.
https://msdn.microsoft.com/en-us/library/hh265137.aspx
Many more!

12 / 27

Various options

http://docs.nvidia.com/cuda/thrust/index.html
https://github.com/harrism/hemi
https://msdn.microsoft.com/en-us/library/hh265137.aspx

Alan Gray's (ex-EPCC, now NVIDIA) project

Using C as the host language. Targets parallelism using OpenMP (CPU,
Xeon Phi) and CUDA.

Data elements accessed through macros to abstract layout; data allocation
and movement handled by simple API.

Parallelism expressed with two macros: __targetTLP__ and __targetILP__
for thread and instruction level parallelism respectively.

Good if you want something lightweight and are using C.

https://arxiv.org/abs/1609.01479 source in LUDWIG
https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/

13 / 27

targetDP (DP = data parallel)

https://arxiv.org/abs/1609.01479
https://ccpforge.cse.rl.ac.uk/gf/project/ludwig/

C++ library that uses these concepts to achieve performance portability.

DAXPY combined with a reduction:

double* x; double* y;
RAJA::SumReduction<reduce_policy,double> sum(0.0);

RAJA::forall<exec_policy>(begin, end,
 [=] (int i) {
 y[i] += a * x[i];
 sum += y[i];
 });

14 / 27

RAJA From LLNL (one of the big US national
labs)

CoMD is a classical molecular
dynamics code, written in C
(baseline - green)

The RAJA authors ported it to
RAJA naively (RAJA-reference -
blue) and then optimized some
parts (RAJA-schedule - yellow).

Better than the optimized C
version! They only had to alter
2% of lines and now it runs on
GPU too.

15 / 27

RAJA performance

Features quite similar to RAJA and also a product of a US national lab: Sandia
this time.

They are much more open and have several major applications (e.g. LAMMPS
molecular dynamics code, SPARTA rarefied gas code) and libraries (Trilinos)
using Kokkos.

They are committed to supporting use of Kokkos internally and externally.

They have a library of routines for BLAS/LAPACK/Graph manipulation and a
growing ecosystem.

16 / 27

Kokkos

HPC's favourite simple test, saxpy (single precision a*x + y)

kokkos::parallel_for(N,
 KOKKOS_LAMBDA(int i) {
 y(i) = a * x(i) + y(i);
 });

This will run the lambda N times in the "default execution space" you have set
(by default the CPU, but could easily be the GPU)

The KOKKOS_LAMBDA is to deal with CUDA requiring lambdas to have the
__device__ attribute.

17 / 27

Kokkos simple example 1

Dot product of x and y:

float result = 0;
parallel_reduce(N,
 KOKKOS_LAMBDA(int i, float& value) {
 value += x(i) * y(i);
 }, result);

Kokkos manages each thread's local temporary values and reduces them in a
scalable way based on the execution space.

18 / 27

Kokkos simple example 2

Kokkos uses a lightweight "View" template class to store data. It can be
considered much like a std::shared_ptr.

Rank (number of dimensions) is fixed at compile time

Size of array can be set at compile or run time (run time must go first).

// 2 run, 0 compile
View<float**> d1("label", M, N);

// 1 run, 1 compile
View<float*[N]> d2("label", M);

// 0 run, 2 compile
View<float[M][N]> d3("label");

19 / 27

Kokkos data

Allocation and copy only occur when explicitly specified

Copy construction and assignment are shallow.

Only when last view holding a reference destructs is the data deallocated.

View<int[5]> a("a"), b("b");
b = a;
{
 View<int*> c(b);
 a(0) = 1; b(0) = 2; c(0) = 3;
}
std::cout << a(0);

What is printed?

20 / 27

Kokkos data

Allocation and copy only occur when explicitly specified

Copy construction and assignment are shallow.

Only when last view holding a reference destructs is the data deallocated.

View<int[5]> a("a"), b("b");
b = a;
{
 View<int*> c(b);
 a(0) = 1; b(0) = 2; c(0) = 3;
}
std::cout << a(0);

What is printed? 3

21 / 27

Kokkos data

Kokkos has the concept of a memory space. E.g.

main host DRAM
GPU memory
Xeon Phi HBM
CUDA Unified memory

You give this as a second template argument to the view:

View<double**, CudaSpace> view(M, N);

If you don't provide one, it will use a default suitable for your default
execution space.

22 / 27

Memory spaces

Kokkos also controls memory layout with a template parameter:

View<double**, LayoutRight, Space> CStyle(M,N);
View<double**, LayoutLeft, Space> FortranStyle(M,N);

If you don't provide one, it will use the default for the memory space (e.g.
LayoutLeft for CudaSpace and LayoutRight for HostSpace).

You can define your own layouts.

23 / 27

Memory layout

A mirror is a view of a compatible array residing in a (possibly) different
memory space.

You must explicitly request copying with deep_copy.

// Create your device array
View<double*, CudaSpace> data(N);

// Create a host mirror of that
auto host_data = create_mirror_view(data);

// Populate on host
host_data = ReadFromFile();
deep_copy(data, host_data);

// Use on device
parallel_for(...);

24 / 27

Mirrors and copies

RamsesGPU is an astrophysical
magnetohydrodynamics code,
started in 2009, parallelised with
CUDA and MPI.

The developers have ported
some parts to use Kokkos instead
of CUDA.

Without much optimization
effort they see performance only
2--5% worse than their highly-
tuned CUDA

And better CPU-only performance:

Gray: Original code

25 / 27

Some results

LAMMPS - major open source
MD code

Very widely used

Was the first major (public) code
to use Kokkos

Most recent benchmarks from
http://lammps.sandia.gov/bench.html

Lennard-Jones case (Higher is better)

26 / 27

Some results

http://lammps.sandia.gov/bench.html

LAMMPS - major open source
MD code

Very widely used

Was the first major (public) code
to use Kokkos

Most recent benchmarks from
http://lammps.sandia.gov/bench.html

Stillinger-Weber potential (Higher is
better)

Highly tuned vendor
implementations can still win!

27 / 27

Some results

http://lammps.sandia.gov/bench.html

