
Massively Parallel OpenMP-MPI
Implementation of the SPH Code

DualSPHysics

Athanasios Mokos, Benedict D. Rogers

School of Mechanical, Aeronautical and Civil Engineering

University of Manchester, UK

eCSE Webinar, 24 January 2018

Funded by the eCSE, eCSE07-16

Outline of Presentation
 Motivation for Research

 Introduction to Meshless Methods
 Introduction to SPH

 Message Passing Interface
 Domain Division

 Process Communication

 Asynchronous communications

 Results
 Runtime Results

 Optimization
 Dynamic Load Balancing

 Domain Decomposition

 2D/3D Decomposition
 Zoltan Library

 Domain Decomposition Algorithms

 Conclusions and Future Work

Motivation for Research

● Primary focus on violent water flows with breaking free surface, e.g. wave impact/slamming or

potentially explosive pipe flows

● Applications:

● Coastal Defence

● Offshore structures

● Dam and river flooding

● Experiments are expensive and

require significant investment

Whitehaven 2013 (North News)

● Focus on computational methods

Mesh-based Methods

● Most common methods used in both

industry and academia:

– Finite Difference Method (FDM)

– Finite Element Method (FEM)

– Finite Volume Method (FVM)

● Robust, well-developed and mature

– Multiple algorithms and models

– Adapted for every application

Mesh around a RAE 2822 transonic aerofoil

(NASA)

However…

Mesh-based Methods

Meshing can be complex

Mesh around an airplane hull

(Photo courtesy of Siemens)

Deformation?

Waves breaking on the shore

(Photo courtesy of the University of Plymouth)

Meshless Methods

● Particles are not connected with a grid

● Particles are not fixed but move with their own

velocity and acceleration

● Computation Points: Nodes -> Particles

● Each particle follows a unique trajectory

● Particles are described through Lagrangian

derivatives: Rate of change along a trajectory

● Particles are linked to their current neighbouring particles in space

● Particles possess properties (density, pressure etc.) travelling with them

Local Interpolation

● Particle movement also affected by neighbours

● Neighbours’ values affect the properties of the particle through a summation

Introduction to Smoothed Particle Hydrodynamics

● SPH is a Lagrangian meshless method: Computation points (particles) move

according to governing equations (Navier-Stokes Equations)

● Properties computed through local interpolation with a weighting function (kernel)

around each particle

N

j

jj

j

j
hWA

m
A

1

,rrrr

Radius of
influence

2h

● Basic idea: The value of a function A(r) at point r in space is approximated as:

drrrr AA

Introduction to SPH
● Navier-Stokes Equations

● Continuity

● Momentum

● Fluid Compressibility

 iji

j

jij
i Wm

t
 uu

d

d

iij

j

iji

i

i

j

j

j W
pp

m
t

F

u

d

d
22

o Incompressible SPH → Poisson Equation

o Weakly Compressible SPH → Equation of State

d

d
v

t

 Fu
u 21

d

d

p

t

SPH for real problems

● Real-life applications are complex

3D flows

● SPH requires over 108 particles to

model them

● Multi-scale problems with long

runtimes

● Must do so as quickly as possible

OPTION: Use the inherent
parallelism of the GPU

Photo by University of Plymouth

SPH Solver DualSPHysics

● Includes pre- and post processing software

● Open-source project, co-developed with the Universities of
Vigo, Manchester, Parma and Lisbon

http://www.youtube.com/user/DualSPHysics/videos

http://dual.sphysics.org/

● Validated for violent water flows1

http://www.youtube.com/user/DualSPHysics/videos
http://dual.sphysics.org/

Additional Capabilities

Integration with all existing

capabilities of DualSPHysics

• Wave Generator

• DEM model

• Floating Bodies

• Air-Water multiphase model

• Solid-Water multiphase model

• Object motion

Current State of DualSPHysics

GPU

• Highly optimised code

• Multiple options

• Pre- and post-processing tools

CPU

• Highly optimised code

• Multiple options

• Pre- and post-processing tools

• Able to take advantage of the
inherent parallelism

• Simulates millions of particles in
a few months

• OpenMP implementation

• Simulates millions of particles in
a few hours

Current State of DualSPHysics

2D 3D

Speedup up to 21 for a 6-year old
card compared to an 8-thread
OpenMP simulation

Speedup up to 16 for a 6-year old
card compared to an 8-thread
OpenMP simulation

GPUs are fantastic:

 Massively Parallel, ideal for n-body simulations

 Low cost and energy consumption (Green Computing)

Current State of DualSPHysics

NVidia GTX1080

But…

 Still in their infancy (less developed tools and compilers)

 Single precision to maintain speed

 The multi-GPU code is not easily portable

 Require specialised hardware and additional investment
(cannot take advantage of existing HPC infrastructure)

● Industrial engineering companies still need convincing
to invest resources and personnel

 Develop a CPU code with similar capabilities to the existing GPU code that
can be used in HPC installations

 Massive Parallelism required: Ability to scale for 1000s of cores

 Currently only local parallelism (OpenMP) -> Communication between
different processors required

Motivation for Research

AIM: Develop a hybrid OpenMP-MPI program that can

scale to 1000s of cores

 Implementation of the Message Passing Interface
(MPI) standard

 Standardised, independent and portable message parsing library
specification

 Message Passing: Data is moved from one process to another
through cooperative operations on each process. The recipient then
selects the appropriate code to be executed.

Message Passing Interface

Distributed memory model

 Standardised, independent and portable message parsing library
specification

 Message Passing: Data is moved from one process to another
through cooperative operations on each process. The recipient then
selects the appropriate code to be executed.

Message Passing Interface

OpenMP already developed so…

Hybrid memory model

Challenges of Integrating MPI

● Maintain DualSPHysics optimisation and structure
● Cell-linked neighbor list3

● Ease of use

● Reduce changes in SPH computation

● Limits options when creating particles and cells

● Need to introduce new features
● Focus on updating existing functions to work with multiple nodes

● Create new files to handle communication and data transfer

Figure 1: Example of the Cell-linked List using 2h×2h cells

2h

Cell
Neighbour Search

Area

2h Neighbouring

Particles

SPH Solver DualSPHysics

Cell-linked neighbour list3

• Algorithm that optimises neighbour

searching

• Divide the domain into cells

• Cells remain constant throughout the

computation

• Create a list linking particles and cells

• Search for neighbour particles only in

adjacent cells

http://dual.sphysics.org/

http://dual.sphysics.org/

Integrating MPI in DualSPHysics

Single node files

● JCellDivCpuSingle

● JPartsLoad4

● JSphCpuSingle

MPI files

● CellDivCpuMPI

● ParticleLoadMPI

● SphCpuMPI

● Changes focused on:
● Loading data from pre-processing software

● Creating and updating the assignment of particles in cells

● Handling and integrating the new features

Integrating MPI in DualSPHysics

Single node files

● JCellDivCpuSingle

● JPartsLoad4

● JSphCpuSingle

MPI files

● CellDivCpuMPI

● ParticleLoadMPI

● SphCpuMPI

New files created to handle:

● Node communication

● Domain Decomposition

● Halo Exchange

● BufferMPI

● DataCommMPI

● HostMPI

● InfoMPI

● SliceMPI

● SphMPI

● SphHaloMPI

Domain Decomposition

 Allows the simulation to use more particles

 Reduces local and global memory footprint

 Reduces the load on each CPU core

Cell

 Divide the domain between nodes

 Unique particle and cell list

 1D decomposition through slices2

Domain Decomposition

 Allows the simulation to use more particles

 Reduces local and global memory footprint

 Reduces the load on each CPU core

Cell

 Divide the domain between nodes

 Unique particle and cell list

 1D decomposition through slices2

Halo Exchange

 Identify neighbouring particles in another process
or particles moved from another process

 Transfer only the data of all potential neighbours

 Use a halo system for more efficiency3

 Only data from the neighbouring slice (distance
2h) are transferred

 Edge particles form the halo of the subdomain

 Similar procedure on every subdomain border

(Dominguez et al. 2013)2

Asynchronous Communications

● Objective: Minimise waiting time for data
transfer

● Neighbour list of interior particles processed
while sending data of displaced particles

● Compute forces on interior particles while
receiving halo data

● Processes synchronise when calculating
the time step

Results

● Execution for 8 processes

● Results identical to single-node
DualSPHysics

● Results independent of the number
of processes

● Portability: Code operates for both
Windows and Linux in different
processor architectures

Results

● Execution for 8 processes

● Results identical to single-node
DualSPHysics

● Results independent of the number
of processes

● Portability: Code operates for both
Windows and Linux in different
processor architectures

Results

● Execution for 8 processes

● Results identical to single-node
DualSPHysics

● Results independent of the number
of processes

● Portability: Code operates for both
Windows and Linux in different
processor architectures

Runtime Results (small scale)

● Local execution for 1-16 processes
● Westmere: Xeon X5650 - 2.66GHz

(2x6-core)

● Sandy Bridge: Xeon E5-2640 - 2.5GHz
(2x6-core)

● Ivy Bridge: Xeon E5-2650 v2 – 2.6GHz
(2x8-core)

● Haswell: Xeon E5-2690 v3 – 2.6GHz
(2x12-core)

● Still Water case for 700,000 particles

● Parallel Efficiency %100
1pT

T
E

p

p

Scalability (small scale)

● Code can be further optimised

● Parallel Efficiency %100
1pT

T
E

p

p

● Scalability issues do not allow efficient
computation with ~100 processes

● 1D decomposition not scalable

● No load balancing REMINDER: We need more than 108

particles for the target problems

Runtime Results (small scale)

● Local execution for 8 processes
● Intel Xeon E5507 at 2.27GHz

● Still Water case for 160,000 particles

● Current implementation : MPI_Allreduce

● Synchronisation at the end of the time
step slows the computation

Runtime Results (small scale)

● Local execution for 8 processes
● Intel Xeon E5507 at 2.27GHz

● Still Water case for 160,000 particles

● Current implementation : MPI_Allreduce

● Synchronisation at the end of the time
step slows the computation

Dynamic Load Balancing

 Processes do not have the same
workload (number of particles, inter-
particle forces)

Dynamic simulations – workload of
each process changes constantly

Options:

1. Same number of particles

2. Same execution time

 Option 1 is simpler to enforce

 Option 2 has higher potential but
difficult to enforce

Dynamic Load Balancing

 Processes do not have the same
workload (number of particles, inter-
particle forces)

Dynamic simulations – workload of
each process changes constantly

Options:

1. Same number of particles

2. Same execution time

 Option 1 is simpler to enforce

 Option 2 has higher potential but
difficult to enforce

The Zoltan Library

 Use of the Zoltan data management library4

 Library for the development and optimization
of parallel, unstructured and adaptive codes

 Scalable up to 106 cores4

 Includes a suite of spatial decomposition and

dynamic load balancing algorithms and an

unstructured communication package

Dambreak at 1.1s for 256 partitions5

● Geometric Decomposition Algorithm:
Hilbert Space Filling Curve (HSFC)

 A continuous fractal space-filling curve
(containing the entire 2D unit square)

 Maps 2D and 3D points to a 1D curve

 Maintains spatial locality

 Already used for SPH5

 Irregular subdomain shapes
(increased complexity of data transfer)

Hilbert Space Filling Curve

Hilbert Space Filling Curve

Guo et al. (2015)7

 A continuous fractal space-filling curve
(containing the entire 2D unit square)

 Maps 2D and 3D points to a 1D curve

 Maintains spatial locality

 Already used for SPH5

 Irregular subdomain shapes
(increased complexity of data transfer)

 HSFC maps cells on a 1D curve into
the interval [0,1]

 Divides the curve into N ‘bins’ where N
is larger than the amount of processes

 Sums bin weights from starting point,
cutting off whenever the desired
weight is reached

 Bins containing a cutting off point are
further refined until the desired
balance is achieved

HSFC Algorithm

 HSFC maps cells on a 1D curve into
the interval [0,1]

 Divides the curve into N ‘bins’ where N
is larger than the amount of processes

 Sums bin weights from starting point,
cutting off whenever the desired
weight is reached

 Bins containing a cutting off point are
further refined until the desired
balance is achieved

HSFC Algorithm

Using Zoltan in DualSPHysics

● Domain Decomposition and Load Balancing
through Zoltan

Devine et al. (2009)4

● Load Balancing through Cell Weights
– Based on particle number5 (Current)

– Based on execution time

● Main Partitioning Parameter: Cells
– Significantly smaller number than particles

– Allow for load balancing

– Position does not change

● Automatic migration through Zoltan_Migrate
– Low complexity of data transferred

 New arrays created:
 Global Cell ID

 Local Cell ID

 Cell Coordinates

 Cell Weights

Using Zoltan in DualSPHysics

 Each process only holds local data

 Initial domain split by 1D
decomposition (Slices)

 Example: Domain divided in 64
cells containing 285 particles

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63

Global Cell ID

 New arrays created:
 Global Cell ID

 Local Cell ID

 Cell Coordinates

 Cell Weights

Using Zoltan in DualSPHysics

 Each process only holds local data

 Initial domain split by 1D
decomposition (Slices)

 Example: Domain divided in 64
cells containing 285 particles

0 8

1 9

2 10

3 11

4 12

5 13

6 14

7 15

Local Cell ID

 Cell weights5:

Using Zoltan in DualSPHysics

 Data is sent to Zoltan

 HSFC algorithm is applied

 Zoltan Output:
 Global Cell IDs of imported cells

 Global Cell IDs of exported cells

 Destination process

pt

pc

C
N

N
w

 Cell data automatically migrated
using AUTO_MIGRATE option

 GlobalCellID is updated:
 Exported cells removed

 Imported cells added

Using Zoltan in DualSPHysics

 Particles are also imported and
exported

 Data reordered creating new cell-
linked neighbour list

 LocalCellID is updated

 Algorithm applied only when
imbalance exceeds 20%

 Connection between cells and particles needed

 Existing DualSPhysics array: CellPart

 CellPart can be easily mapped on LocalCellID

 LocalCellID acts as intermediary between CellPart and GlobalCellID

Particle Mapping

If Nc number of local cells

CellPart

(2Nc+5)

LocalCellID

(Nc)

GlobalCellID

(Nc)

Particle Reordering

6 10 14 16

0 3 7 11 15 17

1 4 8 12
2 5 9 13

 Currently, particle data reordered
using single node algorithm

 Better option: reorder along HSFC
path5

 GlobalCellID is constant

 Same for LocalCellID – allows
mapping to Cellpart

 Particles need reordering to
maintain local spatial locality

Particle Reordering

 Currently, particle data reordered
using single node algorithm

 Better option: reorder along HSFC
path5

 GlobalCellID is constant

 Same for LocalCellID – allows
mapping to Cellpart

 Particles need reordering to
maintain local spatial locality

Particle Reordering

12 13 14 15

1 0 11 10 17 16

2 5 6 9
3 4 7 8

 Currently, particle data reordered
using single node algorithm

 Better option: reorder along HSFC
path5

 GlobalCellID is constant

 Same for LocalCellID – allows
mapping to Cellpart

 Particles need reordering to
maintain local spatial locality

Partition Results

Partition Results

x

z
y

Partition Results

x

y

x

z

y

z

 Complete a fully working version of the DualSPHysics MPI code
 Halo Exchange

 Particle Exchange

 Assess the code capabilities and validate

 Optimisation

Future Work

 New I/O functions required – Transition to the Hierarchical Data Format (HDF5)

 Execution to large HPC clusters for 1000s of cores

 Halo exchange reworked using cells

 Neighbouring cells explicitly known
through GlobalCellID

 Identify processes the particles are in
and transfer data

 Packing and unpacking algorithms
same as previous code

Halo Exchange

 Particles can move out of the cell

 New cell may be in a different process

 Use Cell coordinates to identify edges
of the process’ domain

 Identify process and cell the particle
moves into

 Use same packing/unpacking algorithm

 Process needs to be completed before
reordering particle data

Particle Exchange

1Crespo, A.J.C., J.M. Dominguez, B.D. Rogers, M. Gomez-Gesteira, S. Longshaw, R. Canelas, R.
Vacondio, A. Barreiro, and O. Garcia-Feal, DualSPHysics: Open-source parallel CFD solver based
on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 2015. 187(0): p.
204-216.
2Valdez-Balderas, D., J.M. Dominguez, B.D. Rogers, and A.J.C. Crespo, Towards accelerating
smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal
of Parallel and Distributed Computing, 2013. 73(11): p. 1483-1493.
3Dominguez, J.M., A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, and M. Gomez-Gesteira, New
multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters.
Computer Physics Communications, 2013. 184(8): p. 1848-1860.
4Devine, K., E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan Data Management
Service for Parallel Dynamic Applications. Computing in Science & Engineering, 2002. 4(2):p.90-97.
5Guo, X., B.D. Rogers, S. Lind and P.K. Stansby, New Massively Parallel Scheme for
Incompressible Smoothed Particle Hydrodynamics (ISPH) for Highly Nonlinear and Distorted Flow,
in Computer Physics Communications, under publication.
6Guo, X., S. Lind, B.D. Rogers, P.K. Stansby, and M. Ashworth, Efficient massive parallelisation for
incompressible Smoothed Particle Hydrodynamics with 10^8 particles, in 8th International
SPHERIC Workshop. 2013: Trondheim, Norway.
7Guo, X., B.D. Rogers, S. Lind, P.K. Stansby, and M. Ashworth, Exploring an Efficient Parallel
Implementation Model for 3-D Incompressible Smoothed Particle Hydrodynamics, in 10th
International SPHERIC Workshop. 2013: Trondheim, Norway.

References

Thank you

Acknowledgements

• U-Man: Georgios Fourtakas, Peter Stansby, Steve Lind

• STFC: Xiaohu Guo, Stephen Longshaw

• U-Vigo: Alex Crespo, Moncho Gomez-Gesteira

• U-Parma: Renato Vacondio

Free open-source DualSPHysics code:

http://www.dual.sphysics.org

Additional Models

● Viscosity:

● δ-SPH:

● Quintic Wendland kernel:

● 2nd order Velocity Verlet time marching scheme

 iiji

j

ji

j

j

i DW
m

dt

d
 uu

2

2

ij

ijij
N

j

ij

j

j

si

Wm
hcD

r

r

2

ij

ijij
N

j

ijij

ji

j

ij

Wm

r

r
u

h

q
q

W
j

Dij

rr

i

4

q where12
2

1

● Equation of state:

 1

0

0

 PP

