Delivering a professional Open ∇ FOAM®

We stand on the shoulders of giants (2015) Custodians of OpenFOAM® (2016)

Copyright © ESI Group, 2017. All rights reserved.

$Open\nabla FOAM$ is the registered trademark owned by ESI / OpenCFD

- OpenFOAM Development in Europe and NA
- Support in Europe, NA, Asia
- Engineering Services and Training in Europe, NA and Asia

OpenFOAM Support

	Value and benefit	Return	ESI Value Proposition	Value ar	nd Benefit	
Development	Customized based on need and application	Sponsor only the developments you need Benefit from others'	Development	Enterprise-level engagement with the OpenFOAM Originator; Developer; Release, Test, Maintenance and		
Consulting	Knowledge transfer and on-site services	Additional expertise whenever required	Licensing			
Support	Best practices, ticket based, guaranteed response time	Global standard consistent across borders Experienced, dedicated	Training	Support authority		
			ESI Global Resources	License-based Rol	Technology Rol	
Training	Basic users, Advanced users Application based Accredited	Standardised material worldwide, updated based on latest release	Strong partner Technology expert Flexible <i>Licensing</i> and	Typically at least 60% cost redeployment	Partner Programmes Process automation Full support and maintenance Custom developments and captured best practices Worldwide provider and technology experts	
Visual Work Flow Process Management	Customizable, scriptable GUI Basic and advanced physics (e.g. CHT, VoF, OverSet)	Fast learning, easily adaptable to process	Service models End-to-end Process and Physics	based on software ownership		
get it right®					www.esi-group.com 3	

CFD Democretisation through OpenFOAM

4

get it right

OpenCFD – Commitment to OpenFOAM Users Development and Release Schedule

- OpenCFD owns the **Open\nablaFOAM** trademark
- Professional Six-monthly Development and Release cycle, including
 - New developments
 - Consolidated bug-fixes
 - Overhaulled testing procedure for Quality Assurance
 - Release and Development repositories in GitLab <u>https://develop.openfoam.com</u>
 - Master branch
 - Develop branch (includes .org version merge) > Master > Release
 - Community Repositories > Develop
- OpenFOAM-plus releases so far
 - OpenFOAM-v3.0+ on Jan 13th 2016
 - OpenFOAM-v1606+ on June 30th 2016
 - OpenFOAM-v1612+ on 23rd December 2016
 - / OpenFOAM-v1706 on 30th June 2017

Quality Assurance testing

Release-cycle test battery

- Small (unit) test loop
 - Nightly tests to ensure no cross-feature breakage

Day

- Approximately 550 feature-by-feature tests
- Execution time ~ 4 hours (nightly)
- Medium test loop
 - Tutorials and small validation tests
 - Approximately 300 tests
 - Execution time ~ 2 days (*weekly*)
- Large test loop
 - ~20 Client cases
 - Several million steady and transient cases
 - Execution time ~ 1 week (once per release)
- Test loops grow with every new functionality released

Updates in OpenFOAM: OpenFOAM-v3.0+ (Jan 2016)

- Features developed in 2014-2015 released in v3.0+
 - Pre-processing
 - Meshing
 - Solver

get it right

- Initialisation
- Heat transfer / CHT
- Boundary conditions
- Turbulence
- Run-time controls
- Post-processing
- 'External' Contributors to OpenFOAM-v3.0+
 - DES and new family of k-ω-SST models
 - Inter-region heat transfer

Updates in OpenFOAM: OpenFOAM-v1606+ (June 2016)

- OpenFOAM-v1606+ (June2016)
 - Message passing performance scaling
 - Gather-scatter order
 - All-to-all processor communications
 - Performance profiling (Bernhard Gschaider)
 - DFSEM (help from Ruggero Poletto)
 - Validated Aeroacoustics enhancements and coupling to Acoustic codes

Time: 0.0000 s

C++ Source Code Guide

C++ Source Code Guide

troductio

Case set-ur

OpenFOAM doo

Updates in OpenFOAM: OpenFOAM-v1612+ (Dec 2016)

- OpenFOAM-v1612+ (Dec2016)
 - VoF sampling and Lagrangian particle injection
 - Eddy-Dissipation concept combustion model
 - Wave modelling and damping (contribution from IH Cantabria)
 - Meshing improvements to AMI and morphing
 - **Documentation** improvements
 - **Community Repository**
 - isoAdvector ٠
 - Efficient I/O for HPC Adios libraries
 - ... to contribute, please register on the GitLab site https://develop.openfoam.com/Development/OpenFOAM-plus
 - Community-assembled on-line tutorials
 - Thanks to initiative from Joszef Nagy supported by Andy Heather
 - Significant enhancements to the online Documentation on www.openfoam.com

> 226 s: null (no write) 1614 s: MPI

Tes	t study	1						 Op(enFOAM
•	100 time steps.						•	178 s: no write	
•	Writin	g each	time s	tep.				•	3426 s: write
								• ADI	OS transport 226 s: null (no
	1			1	1			•	1614 s: MPI
Posix								•	1318 s: POSIX
	-								
MPI									
	-								
lative									
	0.0	1.0	2.0	3.0	4.0	5.0	6.0		

get it

240 Processors

Toot study

Overview

New development highlights and contributions in v1706

- Meshing
 - Overset mesh functionality (Chimera grids)
- Physical models
 - Joule heating source term
 - Lumped point FSI
- Solvers
 - Solver for low Mach number flows
 - Iso-surface-based interface capturing for VOF

Boundary conditions

- New wave generation models
- Numerics
 - Improved second order restart
 - Updated time step control
- Installation

- Usability improvements
 - Command-line bash completion

overview

get it right

• First release of the Overset mesh

Cell-to-cell mapping between disconnected meshes

overview

- First release of the Overset mesh
 - Released for specific solvers with "over" in its name

Copyright © ESI Group, 2017. All rights reserved.

Solvers and Applications (1/3)

- overLaplacianDyMFoam
 - Eulerian flows
 - \$FOAM_TUTORIALS/basic/overLaplacianDyMFoam/heatTransfer
- overSimpleFoam
 - steady state parametric studies of incompressible flow
 - \$FOAM_TUTORIALS/incompressible/overSimpleFoam/aeroFoil

Solvers and Applications (2/3)

- overPimpleDyMFoam
 - transient incompressible flows (moving mesh)
 - > \$FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/ twoSimpleRotors

- overRhoPimpleDyMFoam
 - transient compressible flows (moving mesh)
 - Best practices tutorial in preparation

Solvers and Applications (2/3)

- overInterDyMFoam
 - multiphase incompressible VOF (moving mesh)
 - \$FOAM_TUTORIALS/multiphase/overInterDyMFoam/floatingBody

Copyright © ESI Group, 2017. All rights reserved.

Overset: Verification and Validation overSimpleFoam vs simpleFoam

- Mesh
- Slight difference in background refinement
- Overset is skewed (not 100% overlap)
- Overset: 112.4% Original: 100%
- Residuals
 - Overset: equiv. stability Original: equiv. stability
 - Overset: Resid. < 5.0e⁻³
 Original: Resid. < 1.0e⁻³
- Forces
- Lift = 0.5% difference
- Drag = (0.002) counts
- CPU Performance (for 2000 iterations)

www.esi-group.com

Overset: Verification and Validation overPimpleDyMFoam vs PimpleDyMFoam

- Mesh
- Overset: 101.3%Original: 100%
- Residuals
 - Overset: equiv. stability
 Original: equiv. stability
- Forces
 - Lift = t.b.d Drag = t.b.d
- Performance
 - Overset: 195%
 Origin
- Original: 100%

COMPARING TYPICAL AMI vs OVERSET

Overset: Verification and Validation

Parallel Performance

- overInterDyMFoam
 - 10 time-steps of the floating body overset 25 tutorial
 - Scaling based on 6-proc datum
 - Scaling reported up to 120 processors
 - ► >90% efficiency

Scalability: OpenFOAM-v1706 (overInterDyMFoam)

18

www.esi-group.com

Lumped point FSI

Physical model

lumpedPointMotion library

- *lumpedPointDisplacement* point displacement boundary condition is responsible for movement of patch points based on a coarse representation of the model using lumped points
- Integrated forces and moments acting on the patch are transferred to an external application
- Typical application is a structure loads by passing fluid
- Tutorial: \$FOAM_TUTORIALS/incompressible/ lumpedPointMotion/building

www.esi-group.com

Low Mach number flows rhoPimpleAdiabaticFoam

• New approach to low-Mach number compressible flows

- Temperature is treated assuming an idealised adiabatic process to comply with $\gamma = C_p/C_v$ (=1.4)
- Modified Rhie-Chow interpolation results in insensitivity to time-step size and under-relaxation factor

- Most useful in acoustic simulations, reducing spurious pressure wave generation at mesh interfaces
- Original contribution from CFD Software E+F GmbH
- Reference:
 - Knacke, T. (2013). Potential effects of Rhie & Chow type interpolations in airframe noise simulations. In: Schram, C., Dnos, R., Lecomte E. (ed): Accurate and efficient aeroacoustic prediction approaches for airframe noise, VKI LS 2013-03.
- **Tutorial:** \$FOAM_TUTORIALS/compressible/rhoPimpleAdiabaticFoam/rutlandVortex2D

Interface capturing - isoAdvector

interIsoFoam

- Alternative method to existing MULES algorithm
- Implemented for isothermal, immiscible incompressible fluids
- offers more accurate interface advection and a sharper interface representation
- Works well on structured and unstructured meshes.
- Developed by Dr. Johan Roenby, DHI, Associate Prof. Henrik Bredmose at DTU Wind Energy and Prof. Hrvoje Jasak at University of Zagreb, Department Faculty of Mechanical Engineering and Naval Architecture.
- Reference: Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp interface advection. R. Soc. open sci. 3: 160405. http://dx.doi.org/10.1098/rs os.160405
- Tutorial: \$FOAM TUTORIALS/multiphase/int erIsoFoam/damBreak

Solvers/numerical technique

interFoam

Solitary wave generation models

Boundary Conditions

- Populating implementation of the wave modelling introduced in 1612+ release
- New solitary wave generation for:
 - Grimshaw model
 - McCowan model
- supplied by: The Environmental Hydraulics Institute IHCantabria
- Author: Gabriel Barajas

• Tutorial:

\$FOAM_TUTORIALS/multiphase/interFoam/laminar/waveExampleSolitaryGrimshaw \$FOAM_TUTORIALS/multiphase/interFoam/laminar/waveExampleSolitaryMcCowan

Joule heating

New source term in fvOptions: jouleHeatingSource

• solves an equation for the electrical potential V

 $\nabla \bullet (\sigma \nabla V) = 0$

- Where σ is electric conductivity.
- The source is given by:

 $\dot{Q} = \sigma \nabla V \cdot \nabla V$

- Conductivity
 - isotropical function of temperature
 - Anisotropical function of temperature
 - Prescribed by a vector

• \$FOAM_TUTORIALS/heatTransfer/chtMultiRegionSimpleFoam/jouleHeatingSolid

Cancel

No restrictions on user OS system

- Same version of OpenFOAM runs on any platform (Linux, Windows, Mac OS)
 - Using Docker containers running OpenFOAM on CentOS 7
 - Easy MS Windows installer

get it right

installation

Windows Subsystem for Linux (WSL) and OpenFOAM v1706

- Users may use native Windows 10 Bash on Ubuntu on Windows
- Using a genuine Ubuntu image of 16.04 from Canonical
- Precompiled version of OpenFOAM-v1706 from OpenCFD
- DOWNLOAD UNPACK USE
- http://openfoam.com/download/install-windows-10.php

OpenFOAM Release history

- Brings previous releases of OpenFOAM down to version 1.0
- Download source code
- Read release notes
- Download Release History

Platform	Download	MD5 sum
Source	OpenFOAM-1.7.1.gtgz	2454728d946ee773c963fac15be9ca84
Source	ThirdParty-1.7.1.gtgz	22877bc0b1f2640cd09f175cfc5729b5

Command line completion

Usability

- Command line completion for all OpenFOAM utilities and applications
- Using TAB key will expand possible options:
- Example 1:

checkMesh <TAB> <TAB>

-allGeometry	-help	-noZero	-writeAllFields
-allTopology	-latestTime	-parallel	-writeFields
-case	-meshQuality	-region	-writeSets
-constant	-newTimes	-roots	
-decomposeParDict	-noFunctionObjects	-srcDoc	
-doc	-noTopology	-time	

• Example 2:

checkMesh -time <TAB> <TAB>

0 0.1 0.2 0.3 0.4 0.5

• Example 3:

checkMesh -region <TAB> <TAB>

air porous

Mesh quality visualisation

- New option for checkMesh:
 - writeAllFields will write all quality parameters as volumetric fields
 - writeFields `(skew)' will write only listed fields

OpenFOAM 2017 Roadmap

Some enhancements targeted for v1712

- Overset mesh release
 - Best practises for applications in marine and ground transportation
- Extensions to FSI lumped mass interaction
- Continuing Parallel I/O scaling and operation improvements
- Continuing Improvements in mesh generation
- Multiphase exchange (melting and evaporation)
- CHT enhancements, underhood and heat-transfer
- (COMM) Next phase of integration of wave modelling and marine solutions
- (COMM) Next phase of isoAdvector integration
- (COMM) Particle physics (Monte Carlo) with advanced physics
- Extended Theory and User guide documentation
- (COMM) Finite Area functionality
- (COMM) Extended Acoustics analogies
- (COMM) Third-party meshing integrations
- (COMM) Third-party chemistry utilities
- Optimisation strategies

(COMM) means OpenFOAM interactions with the wider Community

SHIMIZU Corporation - An application (2011 Japanese Tsunami)

SHIMIZU Corporation - Challenging on Multi-scale simulation

Copyright © ESI Group, 2017. All rights reserved.

get it

www.esi-group.com

get it right

... in 2017, see us at

- Events
 - Workshops in Asia for OpenFOAM in AeroVibroAcoustics
 - China –12-13th July
 - Japan 19-20th July
 - North American Forum 26-27th September
 - India t.b.a (Nov/Dec)
 - Conference Europe 17-19th October 2017
 - Wiesbaden, nr. Frankfurt, Germany

- Workshop for OpenFOAM in AeroVibroAcoustics
 - 19-20th October, Frankfurt
- REGISTRATIONS STILL OPEN
- Release webinars
 - for v1712: January 2018
- Next releases
 - v1712 in December 2017
 - v1806 in June 2018

OPENFOAM CONFERENCE KEYNOTES

PHIL ROE KYRIAKOS Upwind methods GIANNAKOGLOU Adjoint Optimisation

CHRIS BEALE Fuel cells KARL MEREDITH Fire modelling and Suppression

www.esi-group.com

