
Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at:
www.archer.ac.uk/training/feedback/online-course-feedback.php

Introduction to
Version Control

(part 1)
ARCHER Virtual Tutorial

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
• Version Control – do it yourself?

• What’s the problem?
• Version Control Systems

• Benefits
• Common version control systems
• Common core concepts and terminology

• Simple demonstration using SVN
• Where do repositories live?
• Word of warning
• Practical demonstration

Version Control - Do It Yourself?

paper_draft

paper_draft2

paper_draft2_alternative

paper_draft3 paper_draft4

paper_draft4_Alice

paper_draft4_Bob

paper_final

Version Control - Do It Yourself?

initial_code

code_that_works

code_other_algorithm

code_faster code_latest

code_new_functionality_Alice

code_changes_Bob

code_final

What’s the problem?

What’s the problem?
• Forced to manually keep track of

• The distinctive content of each version
• How versions of the same file are related
• How versions of different files are related (e.g. code dependencies)
• Which versions of which files should be used (together) as a basis

for further work, for compiling an executable

Do we record this information in filenames and directory
structure? Inside the files themselves? Elsewhere?

What’s the problem?
• Forced to manually merge versions:

• To produce a “final” version that meets specific requirements by
combining content from different versions

• If you have edited copies of a file in different locations (e.g. laptop
& desktop)

• If other people have added useful contributions to copies of a file
and you need to combine these

• Need to keep track of files resulting from these merges

This is (human) error prone and quickly becomes
unmanageable for many files / many versions

Version Control Systems
These are software tools that:
• Provide a framework to record meaningful information about

versions in a consistent, systematic way

• Help automate the tracking of versions and the changes
between them

• Allow you to record the state of a collection of files at a given
time as a snapshot and provide easy access to these
snapshots
• This captures and preserves dependencies between particular

versions of files, e.g. source code

Version Control Systems
• Provide a safety net (can recover previous versions of

snapshotted files)

• Allow for easy duplication and synchronisation of files in
multiple locations
• Avoids error-prone manual transferring of files
• Can act as a backup of your data
• Easily work on different machines

• Enable collaborative work on same set of files at the same
time, automatically identifying contributions from different
authors

Version Control Systems
• Thanks to automatic change tracking, we can

• Make a copy of a set of files and modify these with a particular goal
in mind (“branching”)

• Merge these modifications (our “branch”) into
• the original set of files (the “trunk”, or “master branch”) or
• another set of files also originating from “trunk” but differently modified

(another “branch”)

• We can use version information to facilitate
• Reproducible computational research
• Testing and development

Common Version Control Systems
Common open-source version control systems:

• CVS (Concurrent Versioning System)
• mature, not as popular any more but still used

• SVN (Subversion)
• successor to CVS, still somewhat widespread
• more flexible and efficient than CVS e.g. at handling non-text files

• Git
• newer, faster, powerful features, popular for many new software

projects, able to handle complex workflows
• Mercurial

• Like Git but simpler in some ways to use

Common Version Control Systems

• Source: Google Trends

• cvs svn mercurial

Common Version Control Systems

• Source: Google Trends

• cvs svn mercurial git

Common core concepts & terminology
Some concepts and terms are common to different version control
systems:
• Repository

• The complete archive / history of all the versions of files that were recorded
(i.e. all snapshots), including how they are related and what change(s) led to
each version.

• Check out (or “clone” for git)
• To take a copy of the repository and duplicate it locally as a “working copy”

• Working copy
• The set of all files contained in your local copy of the repository. Unless you

have just checked out or updated your working copy its contents differs from
the repository due to changes you have made to files, or due to the repository
itself having changed in the mean time.

Common core concepts & terminology
• Commit

• To record the current state of a file or set of files in your working copy to the
repository as a version, or revision (a commit). This transfers data to the
repository.

• Log
• A record of which files in the repository were changed when, including

(hopefully) meainingful comments by the author who made the changes.

• Staging area
• A list of files that you have preselected to commit

• Add
• To add a file or files to the staging area

Common core concepts & terminology
• A branch

• A series of successive changes and commits to a copy of a set of files in the
repository, typically done in order to explore a particular direction of
development such as, in software, a new feature. The original files are left
unaffected by any changes on the branch until you choose to do a “merge”.

• Merge
• The combination of two versions of a file or files into one
• This can lead to conflicts, which need to be resolved manually (the version

control can point out conflicts but you need to think and decide what matters)

• Update
• To attempt to merge the current state of the repository into your local working

copy

Demonstration using SVN
• Check out an existing repository
• Look at the log
• Create a file
• Commit the file
• Make a change
• Commit the change

Where do repositories live?
• Repositories can live on a publicly hosted website (e.g.

Bitbucket, Github), on a shared machine e.g. within your
research group or institution, or on your own desktop or
laptop

• More about this in Part II

Word of warning
• Version control systems are not a magic bullet, but a

powerful tool

• You still need to think and decide how to manage your
work

• When working collaboratively, need to communicate

• Scripted practical provided on ARCHER website
• Using SVN to create a repository, add files, create branches, merge

changes

• Part II will
• explore the differences between centralised and distributed models

of version control and local and remote repositories
• Demonstrate the basics of Git and how it compares to SVN
• Consider which version control system you might want to use

