

#### Optimisation of LESsCOAL for largescale high-fidelity simulation of coal pyrolysis and combustion

Kaidi Wan<sup>1</sup>, Jun Xia<sup>2</sup>, Neelofer Banglawala<sup>3</sup>, Zhihua Wang<sup>1</sup>, Kefa Cen<sup>1</sup>

- 1. Zhejiang University, Hangzhou, China
- 2. Brunel University London, Uxbridge, UK
- 3. Edinburgh Parallel Computing Centre (EPCC), Edinburgh, UK

Jun.Xia@brunel.ac.uk









- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



#### Pulverized-coal combustion



Coal particles (75-90 micron) are fed into a premixed methane air flame at a rate of 100 g/m<sup>3</sup>.

https://www.youtube.com/watch?v=dtldyVk026k



#### What is coal combustion?





## Pyrolysis models

#### **SFOM** model

$$\frac{dm_{vol}}{dt} = A_v \exp(-\frac{E_v}{RT_p})(m_{vol}^* - m_{vol}) , \ m_v^* = Qm_v^{*'}$$

- Kinetic:  $A_{\nu}$ ,  $E_{\nu}$  and Q
- Need to be calibrated



Chemical Percolation Devolatilization model

- Current state-of-the-art model
- General kinetic parameters
- **5** chemical **structural** parameters -  $(MW_{cl}, MW_{\delta}, p_0, \sigma + 1, c_0)$
- <sup>13</sup>C Nuclear Magnetic Resonance
- <u>Nonlinear correlation of <sup>13</sup>C NMR</u>
  - volatile matter content
  - ultimate analysis

http://www.et.byu.edu/~tom/devolatilization/CPD%20model.html



#### Simulation setup

• Primary Inlet (*D* = 13 mm)

• Grid: ~1.56 million cells

- Gas: N<sub>2</sub>, 10 m/s, 300 K, Re ≈ 8200
- Coal: 5.1×10<sup>-4</sup> kg/s, 300 K,  $d_{min}$  = 10 μm,  $d_{max}$  = 100 μm,  $d_{mean}$  = 45 μm,  $\rho$  = 1400 kg/m<sup>3</sup>
- Co-flow
  - Gas: N<sub>2</sub>, 0.2 m/s, **2000 K**
- Outlet
  - Convective boundary condition
- CPD model
- SFOM model calibrated by CPD-LES

#### **Computational Domain**







## Pyrolysis case

- LES of pulverized-coal pyrolysis
  - Online CPD model => describe pyrolysis of coal particles





#### SFOM vs. CPD



The calibrated SFOM cannot fully represent the pyrolysis characteristics => considered in CPD.



K.D. Wan et al. Combust. Sci. Technol. 2017.



11

#### **Combustion case**

- LES of pulverized-coal combustion
  - Online CPD model => describe pyrolysis of coal particles
  - PaSR combustion model => volatile (gas phase) combustion
  - Kinetic/diffusion model => char (surface) reaction





K.D. Wan et al. Flow Turbul. Combust. (revision submitted)



#### Validation with exp.





Large difference in the instantaneous pyrolysis characteristics.

12 K.D. Wan et al. Flow Turbul. Combust. (revision submitted)



- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions

#### Brunel University London

## Motivation

- Pulverized-coal combustion (PCC) is important
  - For UK, 25% of electricity power
  - For China, the figure is 70%
- Poor optical access in coal-fired furnaces
  Difficult to apply advanced laser diagnostics
- High-fidelity simulation
  - Enabled by high-performance computing
  - Large-eddy simulation (LES) of PCC in industrial furnace
  - Computational study of advanced clean coal technologies





- Background information
- Motivation of the project
- The LESsCOAL code
- Project targets & optimization strategies
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



#### LESsCOAL

- <u>Large-Eddy Simulations</u> of <u>COAL</u> combustion
  - Momentum module => Navier-Stokes equations

(low Mach number form)

- Scalar module => transport gas species and temperature
- Particle module => trace coal particles

(two-way coupling)

- Radiation module => solve radiative heat transfer
- Pressure module => solve Poisson equation
- SGS module => calculate subgrid-scale model terms



# Original scaling performance



- Good: scalar, momentum and SGS modules
- Poor: particle, radiation and pressure modules
- Overall: satisfactory scaling up to 200 cores



- Background information
- Motivation of the project
- The LESsCOAL code
- Project targets & optimization strategies
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



## Project targets & strategies

- Achieve 80% of the theoretical parallel efficiency when up to 3,000 computing cores are used on ARCHER
  - Develop and implement a new parallel particle-tracing algorithm to radically improve the load balance among processor cores.
  - Implement a three-dimensional domain decomposition approach. (more efficient information transfer)
  - Improve the pressure solver, considering both robustness and efficiency.
  - Improving the radiation module.
  - Implement new MPI and FORTRAN functionalities. (One-Sided Communications, non-blocking collectives, C-like pointers, etc)



- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



#### Pressure module

• The pressure equation is a Poisson's equation:

$$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 P}{\partial z^2} = S$$

- Solved by calling HYPRE an open-source software package for solving large, sparse linear equations in parallel.
- <a href="https://github.com/LLNL/hypre">https://github.com/LLNL/hypre</a>
  - Written in C. (provides an interface for Fortran)
  - Require MPI library.
  - Multigrid and Krylov-based solvers: SMG, PFMG, PCG, GMRES, BICGSTAB, HYBRID.
  - Preconditioners: DIAGONAL, PFMG.



#### HYPRE



- 14 setups with different solvers and preconditioners.
- Least number of iterations: SMG-none.
- Least time consuming: GMRES-PFMG & PCG-PFMG.



- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



#### **Radiation module**

• Discrete ordinates method (DOM) with S4 scheme (24 directions):

$$c_1 \frac{\partial I}{\partial x} + c_2 \frac{\partial I}{\partial y} + c_3 \frac{\partial I}{\partial z} + c_4 I = S$$

• The first-order upwind scheme is employed and the finite-difference form of the equations is

$$b_{1}(I_{i,j,k} - I_{i-1,j,k}) + b_{2}(I_{i,j,k} - I_{i,j-1,k}) + b_{3}(I_{i,j,k} - I_{i,j,k-1}) + c_{4}I_{i,j,k} = S$$
  
$$(b_{1} + b_{2} + b_{3} + c_{4})I_{i,j,k} - b_{1}I_{i-1,j,k} - b_{2}I_{i,j-1,k} - b_{3}I_{i,j,k-1} = S$$

- The method is inherently serial, each processor requires the data on its upwind boundaries becoming available before it can begin "meaningful" computations.
- Speedup is limited when large number of cores are used, as cores at the downwind side need to wait for the boundary data to be updated.



## 1. Priority queuing

- 24 rays.
- Different directions.
- Priority optimized queuing.

| 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|
| 3 | 4 | 5 | 6 | 7 | 8 |
| 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 2 | 3 | 4 | 5 | 6 |

- Different cores compute different rays at the same time.
- Optimized transport efficiency of the radiation information:
  - Before: once per 24 ray calculations.
  - After: once per ray calculation.

# 2. Wavefront sweep algorithm

- Cells of the same color are independent and may be processed in parallel once preceding slices are complete.
- Boundary data can be sent to downwind neighbors before all the boundary updated.

#### CON:

- 2D domain decomposition.
- Inefficient memory access.





## **Diagonal slicing**



- More frequent transport of radiation information
- Nblock value => Tuning parameter

- The frequency of MPI communications between CPU cores.



#### Recent code optimization work

- Number of grid cells: 10 million
- Method 2: more suitable for modeling radiation in a long channel/tube.





- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



## Particle module

- Lagrangian particle tracing
- Two parallel strategies:
  - Particle decomposition
    - Perfect load balance
    - Access to whole gas field for each core
  - Domain decomposition
    - Gas phase: perfect load balance and efficient
    - Particle phase: load imbalance issue





#### Load imbalance

- Significant load imbalance issue in the particle module.
  - LES of gas-solid multiphase turbulent jet.
  - Two-way coupling between gas and particle phases.



- Distribute particles evenly to each core?
- How to consider the two-way coupling?

## OhHelp



- Particles will be sent from heavy-loaded cores to light-loaded cores.
  - Corresponding gas properties and source terms will also be transferred.
  - Transfer scheme determined by an open-source library: OhHelp.





## One-sided communications

- Bookkeeping step in the particle transfer scheme.
- MPI collective communication function: MPI\_Allgather
- MPI one-sided communication function: MPI\_Put





- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



#### **Optimized performance**



- Strong scaling test: Good up to 1200 cores (> 82%).
- Weak scaling test: Achieved 80% of the theoretical paralle efficiency when using 3072 cores on ARCHER.



- Background information
- Motivation of the project
- Project targets
- The optimization strategies adopted
- Optimization of the pressure module
- Optimization of the radiation module
- Optimization of the particle module
- Parallel performance after optimization
- Conclusions



#### Conclusions

- The parallel efficiency and optimization work of the LESsCOAL code for LES of pulverized-coal combustion has been presented and discussed.
- The original code has a satisfactory scaling up to 200 cores.
- Good scaling: scalar, momentum and SGS modules;
- Poor scaling: particle, radiation and pressure modules.
- 5 optimization strategies have been employed.
- Parallel efficiency of LESsCOAL has been significantly improved.
- Project target has been achieved: 80% of the theoretical parallel efficiency when using 3072 cores on ARCHER.



## Acknowledgements

- The embedded CSE programme of ARCHER UK (0513)
- K.D.W. acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK
- ARCHER UK National Supercomputing Service (http://www.archer.ac.uk)





@K.D. Wan 2017-3-22