
Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at:
www.archer.ac.uk/training/feedback/online-course-feedback.php

CP2K: Recent performance
improvements and new

TD-DFT functionality
ARCHER Virtual Tutorial, 23rd Nov 2016
Iain Bethune ibethune@epcc.ed.ac.uk
Matt Watkins mwatkins@lincoln.ac.uk

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
• CP2K 4.1 Release

• Performance Improvements
•  eCSE 06-06 (Iain Bethune & Mark Tucker, EPCC)

•  Time Dependent DFT functionality
•  eCSE 03-11 (Matt Watkins & Sergey Chulkov, University of Lincoln)

CP2K Overview
“CP2K is a program to perform atomistic and molecular
simulations of solid state, liquid, molecular, and biological
systems. It provides a general framework for different
methods such as e.g., density functional theory (DFT) using
a mixed Gaussian and plane waves approach (GPW) and
classical pair and many-body potentials.”

From www.cp2k.org (2004!)

2nd most heavily used
code on ARCHER,
>2000 MAU since 2014

CP2K Overview •  Many force models:
•  Classical
•  DFT (GPW, GAPW + vDW)
•  Hybrid Hartree-Fock
•  LS-DFT
•  post-HF (MP2, RPA)
•  Combinations (QM/MM, mixed)

•  Simulation tools
•  MD (various ensembles)
•  Monte Carlo
•  Minimisation (GEO/CELL_OPT)
•  Properties (Spectra, excitations …)

•  Open Source
•  GPL, www.cp2k.org
•  1m loc, ~2 commits per day
•  ~20 core developers

CP2K 4.1
•  Released 5th Oct 2016

•  Installed on ARCHER 19th October

•  Default version: Previous releases also available:
module load cp2k module load cp2k/3.0.16521

 module load cp2k/2.7.15791

•  New features
•  Modified Atomic Orbitals analysis (Heinzmann & Alrichs, 1976)
•  Interface to OMEN for NEGF transport calculations
•  Linear Scaling DFT

•  Polarized Atomic Orbitals (Berghold et al, 2002)
•  Curvy Steps (Shao et al, 2003)

•  O(N3) RPA implementation
•  k-Points improvements (https://www.cp2k.org/faq:kpoints)
•  TD-DFT with Hybrid Functionals (more later)

https://www.archer.ac.uk/documentation/
software/cp2k/ for documentation,
benchmarks, hints and tips…

Complete list:
https://www.cp2k.org/version_history

CP2K Training
• CP2K User Group Meeting

•  Monday 9th Jan 2017
•  In Edinburgh (travel funding available for UK users)
•  Keynote speaker - Prof. Jürg Hutter, University of Zurich
•  Method & application talks
•  Lightning talks

•  Info from last year:
https://www.epcc.ed.ac.uk/content/cp2k-uk-workshop-2016

• Hands-on CP2K training / development support
•  Contact ibethune@epcc.ed.ac.uk

Performance Improvements
•  Load balancing for disordered / inhomogeneous systems

• Existing algorithm:
•  Serial, O(p2) memory and time
•  Disabled for p > 1024

• New algorithm:
•  MPI parallel, O(p) memory and time
•  Uses MPI_Scan()
•  Enabled by default

www.archer.ac.uk

Page 6 of 17

6. Technical Information (approx. 2-3 pages / 500-1000 words)
The first proposed work package
addresses key limitations of the load
balancing algorithm used by the
Quickstep module in CP2K. Quickstep
(also known as the Gaussian and Plane
Waves / GPW method) uses a dual-basis
approach to solving the Kohn-Sham DFT
equations. Each term in the K-S
Hamiltonian is evaluated either in real-
space using analytic expressions
involving atom-centred Gaussian basis
functions on regular multigrids, or in
Fourier space (Plane Waves). An
efficient scheme to map between the
realspace (RS) and planewave
representations was described in [15],
and an overview of some of the
computational aspects of the
implementation is given in [16]. One
important computational task is the
mapping of Gaussian functions (stored as
coefficients in a sparse matrix) onto the
RS grids, referred to as collocation, and

the inverse operation as integration. Whilst the RS grids are evenly decomposed over
processes in a geometric decomposition (1D, 2D or 3D), the distribution of Gaussians
depends on the underlying geometry of the problem, which could be quite poorly load
balanced (e.g. for interfaces, isolated molecule/nanoparticles, or condensed phase
systems with a few heavy cations). Thus a load balancing step exists which iteratively
migrates Gaussians subject to certain constraints with the aim of minimising the load of
the most heavily loaded process. However the current implementation has two serious
drawbacks:

• The global load balancing problem is solved serially on process 0, so does not
scale with the number of processes P.

• To gather all the estimated load data and organise potential data transfer from
each process to every other requires O(P2) memory.

In practice, the load balancing is very efficient and the time taken is insignificant in
comparison with other parts of the calculation. However the memory limitation is a
severe bottleneck, and so the default behaviour in CP2K is to turn off load balancing on
> 1024 MPI process runs, exactly when it is really needed! IB and a student [17]
demonstrated a new load balancing algorithm which while still serial, reduces the
memory overhead to O(P), and prototyped it in a branch based on CP2K version 2.4.

This code will be implemented the current CP2K trunk version (2.7), and further
improved by replacing an MPI_Alltoall operation with a cheaper MPI_Scan. Figure 2
shows the speedup of the reduced-memory implementation in CP2K 2.4 over the
current implementation. As a result of this work, we will be able to turn back on load

Process 0

Dest.
Local Grid

Halo

GRID

Process 1

Alternate dest.

Local Grid

Halo

GRID

Figure 7: Mapping of tasks on grid. Tasks are shown as red circles. A tasks default
process is the one where it falls within the local grid. Alternate destinations are the
process where the entire task fall within the halo region.

the optimum load of all processes is found by iteratively shifting the load between the
destination and alternate destination processes. Finally, the task is reassigned to its least
loaded possible destination.

load_balance_distributed is the driver routine that implements the load bal-
ancing process. The driver routines calls create_destination_list to allocate
memory for the list data-structure discussed in Section 3.2, compute_load_list
to add task load to the list data-structure and update task destination after load opti-
mization, and optimize_load_list to optimize the global load of processes. The
next sections show details of the implementation begining with the key data-structures
used in the implementation.

11

Figure%1:%Schematic%of%the%RS%grid%
decomposition%and%mapping%of%Gaussian%
products%(from%[17])%

From P. Shivadasan, MSc Thesis, 2014

Performance Improvements

5

DO idest=1,maxdest

!need to deduct 1 because ‘list’ was passed in to this routine

!as being indexed from zero

IF (load_partial(idest,icpu) > list_global(2,idest,icpu)) THEN

IF (load_partial(idest,icpu) - list(2,idest,icpu-1) <

list_global(2,idest,icpu)) THEN

list(2,idest,icpu-1) = list_global(2,idest,icpu) &

- (load_partial(idest,icpu) - list(2,idest,icpu-1))

ELSE

list(2,idest,icpu-1) = 0

ENDIF

ENDIF

ENDDO

ENDDO

3. Performance

3.1. The Updated Routine

The time spent in the routine optimize_load_list for various numbers of nodes is shown in

Table 1, and represented in Figure 1.

Nodes of ARCHER 2 4 8 16 32 48 64 96

Old Algorithm (millisec) 26 32 51 153 389 1140 1864 5406

New Algorithm (millisec) 17 20 34 69 115 171 305 607

Speedup 1.53 1.60 1.50 2.22 3.38 6.67 6.11 8.91

Table 1: Time in optimize_load_list

Several observations can be made about these results, including:

1. the new code is faster than the old code: on 96 nodes of ARCHER, there is a speedup of

about 9.

6

0

1

2

3

4

5

6

0 16 32 48 64 80 96

Ti
m

e
(s

ec
)

Nodes of ARCHER

Before After

Figure 1: Time spent in optimize_load_list with code before and after the work performed in
this project.

2. the new code scales better than the old code: the new method shows time linearly increasing

with number of nodes whereas the old method was quadratic.

Although greater numbers of cores were not used, the divergence of the curves (resulting from the

change in complexity) is expected to continue.

3.2. The Entire Program

The overall run time of the entire program, before and after the change to the routine optimize_-

load_list for large numbers of nodes is shown in Table 2, and represented in Figure 2.

Nodes of ARCHER 45 48 64 96

Original Code (sec) 1312 1057 1241 1168

Modified Algorithm (sec) 1427 1176 1371 1278

Improvement 8.8% 11.3% 10.5% 9.4%

Table 2: Overall Run Time.

•  Charged cluster of 216 water
molecules in 34Å3 box

•  TZV2P MOLOPT basis set
•  PBC off
•  ~10% speedup

Saving 3.3GB
memory per node

6

0

1

2

3

4

5

6

0 16 32 48 64 80 96
Ti

m
e

(s
ec

)
Nodes of ARCHER

Before After

Figure 1: Time spent in optimize_load_list with code before and after the work performed in
this project.

2. the new code scales better than the old code: the new method shows time linearly increasing

with number of nodes whereas the old method was quadratic.

Although greater numbers of cores were not used, the divergence of the curves (resulting from the

change in complexity) is expected to continue.

3.2. The Entire Program

The overall run time of the entire program, before and after the change to the routine optimize_-

load_list for large numbers of nodes is shown in Table 2, and represented in Figure 2.

Nodes of ARCHER 45 48 64 96

Original Code 1427 1176 1371 1278

Modified Algorithm 1312 1057 1241 1168

Improvement 8.8% 11.3% 10.5% 9.4%

Table 2: Overall Run Time (seconds).

Performance Improvements
•  Gaussian and Augmented Plane Waves (GAPW) Method

•  Represent core electronic density on
 spherical grids around each atom

•  Avoids frozen-core approximation

•  Extra computation not present in GPW:
•  Compute the ‘hard’ density around each atom -
calculate_rho_atom_coeff()

•  Compute updates to the KS matrix elements for each GAPW atom pair
– update_ks_atom()

•  Not OpenMP parallelised

Performance Improvements
5

section shows that there is little room for further improvement in this routine.

Table 3 shows the run time for the entire program as work on update_ks_atom and calculate_-

rho_atom_coefficient progressed. Each of the stages built on previous stages to produce an

Version Processes Threads Run Time

Original Code 24 1 273.17

Original Code 6 4 171.25

Implement OpenMP in update_ks_atom 6 4 172.30

Implement OpenMP in calc_rho_atom_coeff 6 4 73.77

Use hash table in OpenMP in update_ks_atom 6 4 61.63

Improve efficiency of OpenMP use & automatic
arrays in calc_rho_atom_coeff

6 4 47.27

Table 3: Times (seconds) as work on update_ks_atom and calculate_rho_atom_-
coefficient progressed

overall speedup of 3.6× on 4 threads.

Table 4 shows the times as work on calculate_jrho_atom_coefficient progressed: these

times are a different magnitude to those in previous tabes because a different data set was used.

Despite the time in calculate_jrho_atom_coefficient being a minute portion of the over-

Version Processes Threads Entire Specific Intensive

Program Routine Section

Original Code 24 1 7371 0.072 0.060

Original Code 6 4 11179 1.450 1.440

Implement efficient OpenMP 6 4 11979 0.080 0.070

Use automatic Arrays 6 4 12207 0.060 0.050

Table 4: Times (seconds) as work on calculate_jrho_atom_coefficient progressed

all time, this work led to a speedup of about 2.5× for the particular routine and it allowed the

introduction of automatic arrays, and that led to the additional speedup in calculate_rho_-

atom_coefficient.

•  32 water molecules in a periodic
box

•  TZV2P basis set
•  GAPW default settings
•  3.6x speedup for whole code

Why van der Waals force is important?

helical to ladder structural transition in DNA

Hobza et al. J. Am. Chem. Soc., 130, 16055 (2008)

26

experimental crystal structure

after MD simulation
without dispersion term

Performance Improvements
•  Dispersion-corrected functionals

•  Important for a wide range of systems:
•  molecular, MOFs, surfaces…

•  Pair-potential type (Grimme D2, D3)
•  Non-local type (vdW-DF, rVV10 …)

•  Small but measurable overhead
vdW_energy()
get_potential()
calculate_dispersion_pairpot()
calculate_dispersion_nonloc()

•  Not OpenMP parallelised

Recent overview of vDW
corrections in CP2K:
https://www.cp2k.org/_media/events:
2016_summer_school:cp2k-uk-
summer-school-sanliang-ling.pdf

Performance Improvements

5

Original Final Speedup

Pure MPI 360 MPI 360 MPI

2 OMP 2 OMP

Entire Program 414.7 425.4 402.4 1.057×
calculate_dispersion_nonloc 9.27 9.61 5.49 1.750×
vdW_energy 18.20 34.34 21.61 1.589×
get_potential 6.09 6.12 2.63 2.327×

Table 1: Run times (seconds) for routines involved in WP3.

•  Water / BN interface
•  400 H2O, 120 BN
•  1440 atoms, 26x25x40Å cell
•  DZVP MOLOPT basis
•  optB88-vDW functional (Libxc)
•  ~5% speedup

TD-DFT

http://www.archer.ac.uk/training/
•  Face-to-face courses

•  timetable, information and registration
•  material from all past courses

• Virtual tutorials & webinars
•  https://www.archer.ac.uk/training/virtual/
•  timetable plus slides and recordings
•  please leave feedback on previous tutorials after viewing material

Goodbye!

Thanks for attending

Please leave feedback at:
www.archer.ac.uk/training/feedback/online-course-feedback.php

