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Further Help
• ARCHER Best Practice Guide:

• http://www.archer.ac.uk/documentation/best-practice-
guide/performance.php

• CrayDoc:
• http://docs.cray.com

• Search "Using Cray Performance Measurement and Analysis Tools”

• Online help:
• Man pages for the tools
• pat_help utility

• ARCHER training archive:
• http://www.archer.ac.uk/training/courses/craytools/



Why profile?

• For developers:

• Understand what the most time-consuming parts of a program are

• Understand communication patterns & problems

• E.g. load imbalance, synchronisation costs

• Tool to help direct development effort to for maximum benefits

• For users?

• Understand why your program performs in a certain way

• Help with choice of appropriate parameters, MPI processes…



Overview of CrayPAT

• Cray’s Performance Analysis Toolkit (PAT)

• Measuring and understanding performance of parallel codes on 
Cray systems

• Parallel Programming languages / APIs:

• MPI, OpenMP, CUDA, CAF, Chapel, Global Arrays, DMAPP, SHMEM…

• Libraries:

• BLAS/LAPACK/ScaLAPACK, FFTW, PETSc…

• I/O:

• ADIOS, HDF5, NetCDF, POSIX I/O, (MPI I/O)…



Overview of CrayPAT

• Compared with other tools

• e.g. Allinea MAP, Intel TAC, Scalasca, TAU …

+ Works ‘out of the box’

+ Various levels of detail

+ Extreme customisability for expert users

- Only on Cray Platforms

- GUI not as powerful as e.g. MAP



Overview of CrayPAT

• Tools
• pat_build

• Instruments existing binaries for profiling

• pat_report

• Report generator, analyses data from profiling runs

• Apprentice2

• GUI for analysing profiling data

• Reveal

• GUI for code-level analysis, compile-time optimization feedback

• NB. For Cray compiler only.



Overview of CrayPAT

• Choosing a suitable job for profiling

• Program execution should be representative of real production job

• Must be reasonably short, to avoid generating large data, waste 
AUs

• Must be long (enough) to hide start-up, finalisation parts

• Should include all the I/O of a normal job

• Example

• Using CP2K  - www.cp2k.org

• H2O-64 benchmark - http://www.cp2k.org/performance#h20-64

• Takes ~80s using 24 MPI processes, single node of ARCHER



Overview of CrayPAT
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Perftools-lite

• Extremely easy introduction to profiling tools

• Automatically gather profiling data during program execution

• Basic reporting dumped into standard output at end of run

• Generate CrayPAT data files for further analysis (if needed)



Perftools-lite

1. Load the perftools-lite module
module load perftools-lite

2. Build your program as normal

• Use your configure, Makefile, build scripts etc.

• Look for message at end:

INFO: creating the CrayPat-instrumented executable 

'/home/z01/z01/ibethune/cp2k/exe/ARCHER/cp2k.psmp' 

(sample_profile) ...OK



Perftools-lite

3. Run your program

• Usual PBS job submission script

4. Basic profiling data appears at the end of job output

• Overall job info

• Top 10 most time-consuming functions 

• I/O, memory information

• Report also saved in *.rpt file

• A CrayPAT performance data file *.ap2 also created for further 

analysis



Perftools-lite

See example files.



Sampling Experiments

• What is sampling?

• Every so often (100 Hz default), look at the call stack of the 
program

• Record which function is being executed (+ callers etc.)

• A good starting point if you know nothing about the behaviour of a 
program

• Low overhead (~1%)

• Very easy to set up & run



Sampling Experiments

1. Load the perftools module
module load perftools

2. Build your program as normal

• Use your configure, Makefile, build scripts etc.

• NB.  Compile and link stages must be separated

3. Build a sampling-instrumented program
pat_build –o cp2k.psmp+samp cp2k.psmp



Sampling Experiments

3. Run your program

• Usual PBS job submission script

• Change the name of the executable!

4. Once job has completed, CrayPAT will dump data file(s) 

into the run directory
• *.xf file

• Or, if running on large numbers of PEs, a directory containing 
several *.xf files



Sampling Experiments

5. Generate a report on the data
pat_report *.xf > report

• Produces a text report file

• Produces a portable performance data file *.ap2

• Produces a *.apa Automated Profiling Analysis file



Sampling Experiments

See example files.



Tracing Experiments

• What is tracing?
• ‘Trace intercept routines’ inserted at entry and exit of routines

• Records amount of time spend in each call of a function

• Exact sequence of events in a program execution

• Allows for checking state of hardware counters

• Possible to generate endless detail about program execution

• Moderate overhead (~5-10%), depending on what you choose to 
trace

• Balance between detailed measurement and disturbing the 
experiment



Tracing Experiments

1. Load the perftools module
module load perftools

2. Build your program as normal

• Use your configure, Makefile, build scripts etc.

• NB.  Compile and link stages must be separated

3. Build a tracing-instrumented program
pat_build [options] –o cp2k.psmp+trace cp2k.psmp



Tracing Experiments

• Pat_build options:
• For full list see man pat_build

• Tracegroups ( -g )

• e.g. mpi, lapack, omp

• Tracing user functions

• -w enables tracing user functions

• -T trace specific functions

• -u trace all visible user functions (use with extreme caution!)

• Complex to set up

• Except if you only want to trace e.g. MPI library calls

• This is where APA helps



Tracing Experiments

• Automated Profiling Analysis (APA)
• From the sampling experiment report generation, a *.apa file was 

generated containing recommended options for pat_build to set up 
a tracing experiment

pat_build –O *.apa

• Defaults:

• Trace MPI calls

• Gather default hardware counter group

• Trace user functions with > 1% of samples, up to limit of 200

• Very small functions (< 200 bytes) not traced to limit overhead



Tracing Experiments

3. Run your program

• Usual PBS job submission script

• Change the name of the executable!

4. Once job has completed, CrayPAT will dump data file(s) 

into the run directory
• *.xf file

• Or, if running on large numbers of PEs, a directory containing 
several *.xf files



Tracing Experiments

5. Generate a report on the data
pat_report *.xf > report

• Produces a text report file

• Produces a portable performance data file *.ap2



Tracing Experiments

• pat_report options
• Report generation is (almost) endlessly customisable

• There are several pre-defined reports that are a good place to start:
• -O profile (default) – list of most expensive functions

• -O calltree / callers – top-up / bottom up function calls

• -O ca+src – as above, with line numbers

• -O load balance – displays min/mean/max across Pes

• Each table in the report lists which options are needed to generate 
it:
• e.g. Table option:

-O profile

Options implied by table option:

-d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE



Tracing Experiments

• Implied options are a good starting point for customisation
• See man pat_report for full list of options

• Each table also suggests options for related tables, and 
additional pat_report flags

• Also, check the ‘Observations and suggestions’ section



Tracing Experiments

See example files.



CrayPAT GUI
• CrayPAT includes a GUI called Apprentice2

• Reads the portable *.ap2 file format

• Graphical view of the calltree

• Chart views of selected data

• Hardware counters, activity graphs
• Application trace available by setting PAT_RT_SUMMARY=0 before 

running your application

• Warning – v. large trace files (MBs -> GBs!)

• Can be run directly from ARCHER via X-windows
app2 &

• Or binaries available for Mac & Windows
/opt/cray/perftools/6.2.2/share/desktop_installers/



CrayPAT GUI

See example files.



Using the CrayPAT API

• For even finer-graining tracing, CrayPAT provides an API 

to control tracing

• Start/stop tracing at certain points

• Define regions within (or spanning) subroutine calls

PAT_region_begin(1, “region name”)

PAT_region_end(1)

• Also a Fortran API

• Build application, then instrument binary with
pat_build –w –o cp2k.psmp+api cp2k.psmp

• May also include –g mpi etc.



Using the CrayPAT API

• Application code with CrayPAT API calls now depends on 

CrayPAT library

• Will not build without perftools module loaded

• If including in production code, protect CrayPAT calls with 

preprocessor defines.



That’s all folks!

Questions?



Further Help
• ARCHER Best Practice Guide:

• http://www.archer.ac.uk/documentation/best-practice-
guide/performance.php

• CrayDoc:
• http://docs.cray.com

• Search "Using Cray Performance Measurement and Analysis Tools”

• Online help:
• Man pages for the tools
• pat_help utility

• ARCHER training archive:
• http://www.archer.ac.uk/training/courses/craytools/



Goodbye!

Thanks for attending

Please leave feedback at:

www.archer.ac.uk/training/feedback/online-course-feedback.php


