
Meltdown for Dummies
The road to hell is full of good intentions

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Saint Bernard of Clairvaux

3

Good Intentions

Told you so!

Outline

• Introduction

• Analogy

• Anti-meltdown patches

• Performance implications

• Summary

4

What is Meltdown?

Meltdown exploits a race condition, inherent in the

design of many modern CPUs. This occurs between

memory access and privilege checking during

instruction processing. Additionally, combined with a

cache side-channel attack, this vulnerability allows a

process to bypass the normal privilege checks that

isolate the exploit process from accessing data

belonging to the operating system and other running

processes. The vulnerability allows an unauthorized

process to read data from any address that is

mapped to the current process's memory space.

5

Analogy

• Computers are analogies!

- Surely there must be an

everyday situation that

exhibits same behaviour

6

Computer Analogy

Machine Lawyer’s Office

Operating System Lawyer

Memory System Legal Clerk

RAM Filing Cabinets

Accessible Data My Legal Documents

Secret Data Other People’s Docs

Lawyer’s Office

• How can I trick them to give me access to sensitive info?

7

0

5

1

6

2

7

3

8

4

9

front office

back office

my files

secret files

lawyer

clerk

me
0 1

Computer equivalents

8

0

5

1

6

2

7

3

8

4

9

software

hardware

user

memory

OS kernel

memory

operating

system

memory

system user

program 0 1

Memory request

9

0

5

1

6

2

7

3

8

4

9

Can I see

your ID?

Can I see my

document #1

please?

Here it is!
OK

IGOR!
Tum-te-tum ...

0 1

Illegal request

10

0

5

1

6

2

7

3

8

4

9

Can I see

your ID?

Can I see the

contents of safe

#0 please

Here it is!
NO!

GO AWAY!
Sorry ...

0 1

GI1: office should operate quickly

• It would be really slow to go to a different office every time

the clerk wanted to access secret documents

- store them all in the same office

- just deny access to the safes if people aren’t authorised

• Computer

- all RAM is mapped into virtual address space of all user programs

- operating system checks privileges of the accessing process

- only kernel processes are allowed access outside of user memory

• ... will assume all accesses are valid for next sections

11

Unintended Consequence: UC1

• I can see the secret documents

- so I can ask for them

• If they were in a different office

- I wouldn’t even be able to even ask for them

12

Memory request

13

0

5

1

6

2

7

3

8

4

9

Can I see my

document #1

please?
IGOR!

0 1

.... thanks! you’re welcome

Memory request

14

0

5

1

6

2

7

3

8

4

9

Again please?

IGOR!

0 1

.... thanks! you’re welcome

IGOR!

Can I see my

document #1

please?

Memory request

15

0

5

1

6

2

7

3

8

4

9

Again please?

IGOR!

0 1

.... thanks! you’re welcome

IGOR!

Can I see my

document #1

please?

And again?
IGOR!

Memory request

16

0

5

1

6

2

7

3

8

4

9

IGOR!

0 1

Can I see my

document #1

please?

Memory request

17

0

5

1

6

2

7

3

8

4

9

IGOR!

0 1

Can I see my

document #1

please?

Again please?

IGOR!

That was

quick!

GI2 : memory access should be fast

• Why keep going back to document store all the time

- keep recent documents close to hand ...

- ... but still secure in the back office

• Computer

- memory system keeps copies of recent data in fast cache memory

- reads and writes apply to the cached copy

- done automatically in hardware – user just accesses memory

18

Unintended Consequence

• On bus home, I saw my partner’s car at lawyer’s office

- they say they were checking the mortgage arrangements

19

I’ll have Igor

fetch it for you

that took a very

long time ...

Can I see our

mortgage

arrangement?

Unintended Consequence

20

Can I see our

prenup agreement

please?

I’ll have Igor

fetch it for you

that was very

quick ...

UC2: access to privileged information

• Accessing documents that I am allowed to read can give

me information that I am not allowed to have

- through differences in timing

• Computer

- time taken to load data from memory tells you if it was cached

- you can deduce whether or not it has recently been accessed

• Now let’s return to authorisation step

21

Authorisation

22

0

5

1

6

2

7

3

8

4

9

0 1

Can I see my

document #1

please?
Can I see

your ID?

Here it is! Let me check

IGOR!

GI3: authorisation should be fast

• Why wait to tell Igor to go for the document?

- ask for the document at the same time as checking authorisation

- don’t deliver the document until authorisation confirmed

• Computer

- execute instructions out of order

• don’t wait for instruction #1 to complete before issuing instruction #2

- absolutely essential technique to keep modern CPUs busy

- only deliver data to user program once all checks are passed

- otherwise roll back to restore previous state

• optimise for the usual case where everything is OK

• don’t care if the unusual case takes more time

23

Out-of-order (legal)

24

0

5

1

6

2

7

3

8

4

9

0 1

Can I see my

document #1

please?

Can I see

your ID?

Here it is!

Let me check

IGOR!

It’s OK Igor

Out-of-order (illegal)

25

0

5

1

6

2

7

3

8

4

9

0 1

Can I see

safe #0

please?

Can I see

your ID?

Here it is!

Let me check

IGOR!

Rollback!
Sorry!

UC3: digital fingerprints

• The rollback is incomplete

- secret data is in the cache

• But I still can’t read it

- so it’s all OK?

• Do I detect seeds of doubt?

26

GI4: Indirection

• Many programs have constructs akin to

 loop: i = 1, N

 index = lookuptable (i)

 x(i) = x(i) + y(index)

• CPUs have machine-code instructions to do this

- not “load the data from location i”

- but “load the data from location stored in location i”

• This is the final piece of the puzzle

27

0

Indirection

28

0

5

1

6

2

7

3

8

4

9

1

Can I see my

document numbered

the same as contents

of safe #0 please?

Can I see

your ID?

Here it is! Let me check

IGOR!

Rollback! Sorry!

3

So what?

• What did we want to achieve?

- a way of being allowed to read data we should not have access to

• What have we achieved?

- a way of not being allowed to read data we do have access to!

• But there are side-effects

- I was not able to read the value “3” from the safe

- but my document #3 is in the cache!

29

UC4: side effects of indirection

• The rollback is incomplete

- there is a fingerprint in the cache

- produced as a side-effect of accessing a secret document

• I wasn’t able to read the secret document

• But I can now read my own documents

- and see how quickly they come back

30

Inferring the secret data

31

Can I see my

document #0

please?

I’ll have Igor

fetch it for you

that took a very

long time ...

Inferring the secret data

32

I’ll have Igor

fetch it for you

that took a very

long time ...

Can I see my

document #1

please?

Inferring the secret data

33

I’ll have Igor

fetch it for you

that took a very

long time ...

Can I see my

document #2

please?

Can I see my

document #3

please?

Inferring the secret data

34

I’ll have Igor

fetch it for you

that was very

quick ... BINGO!

Meltdown in a nutshell

• Try to read an array element from one of your own arrays

- with an index taken from the value of secret data

• The read will fail but the array element will be cached

• Scan through your array element by element

- measure the time taken to read each element to see if it’s cached

- if reading element “i” is fast, then the secret value was “i”

• Simples!

35

Making it fast

• Analogy lets me read a single digit 0-9 from any safe

- since I have 10 document holders

• How best to read 0-99 ?

a) two reads, one for each digit?

b) one read but with 100 document holders?

• Time to access my documents dominates the read

a) up to 20 document accesses (average of 10 before a hit)

b) up to 100 document accesses (average of 50 before a hit)

36

Technicalities: https://meltdownattack.com/

• Read a single bit at a time

- i.e. target array only has two entries

• Need to space out elements in target array by 4K bytes

- to work round large cache blocks and memory prefetching

• Illegal access throws an exception

- need to deal with this in some way

• Can read data at up to 0.5 MB/s (one bit at a time!)

- with an error rate of 0.02%

37

What is Meltdown?

Meltdown exploits a race condition, inherent in the

design of many modern CPUs. This occurs between

memory access and privilege checking during

instruction processing. Additionally, combined with a

cache side-channel attack, this vulnerability allows a

process to bypass the normal privilege checks that

isolate the exploit process from accessing data

belonging to the operating system and other running

processes. The vulnerability allows an unauthorized

process to read data from any address that is

mapped to the current process's memory space.

38

authorise & access

simultaneously out-of-order

execution

hardware

operating

system
time taken to

read data from

user array

all RAM

Mitigation

• Give up on GI1: “office should operate quickly”

- don’t store all your data in the same office

- need to send Igor to a different office to access the safes

• Operating System

- keep the program memory and system memory separate

- OS has to actively switch between user and kernel memory

- introduces additional context-switching overhead

• Effect

- making OS calls will be slower

- could adversely impact IO performance

39

CSD3 Skylake at University of Cambridge

https://github.com/ARCHER - CSE/archer -

benchmarks/blob/master/analysis/Spectre_

Meltdown_Patch_Impact.ipynb

• “No significant performance differences ... apart from

the synthetic test of parallel write performance

(benchio) where we see a 10-15% performance drop”

- “This variation is within the variation we would expect from a

parallel file system during normal operation so may not be

associated with the patching process.”

- “The results for the random ring latency in the HPCC b_eff

benchmark show some odd features that require further

investigation.”

40

https://github.com/ARCHER-CSE/archer-benchmarks/blob/master/analysis/Spectre_Meltdown_Patch_Impact.ipynb
https://github.com/ARCHER-CSE/archer-benchmarks/blob/master/analysis/Spectre_Meltdown_Patch_Impact.ipynb
https://github.com/ARCHER-CSE/archer-benchmarks/blob/master/analysis/Spectre_Meltdown_Patch_Impact.ipynb
https://github.com/ARCHER-CSE/archer-benchmarks/blob/master/analysis/Spectre_Meltdown_Patch_Impact.ipynb
https://github.com/ARCHER-CSE/archer-benchmarks/blob/master/analysis/Spectre_Meltdown_Patch_Impact.ipynb
https://github.com/ARCHER-CSE/archer-benchmarks/blob/master/analysis/Spectre_Meltdown_Patch_Impact.ipynb

CASTEP Al Slab (al3x3)

41

GROMACS

42

Benchio – parallel MPI-IO to Lustre

43

Random Ring Latency

44

Minimum Ping-Pong Bandwidth

45

ARCHER (TDS): CASTEP

46

ARCHER (TDS): GROMACS

47

Performance

• Little or no impact seen so far

- what effects would a normal OS update have?

• IO may suffer

- benchio optimised for small number of OS write calls

• little effect from patch

- IO in many real applications may not be so simple

• could result in many OS write calls and potential for greater impact

- needs further investigation

• Are there real security implications on single-user system?

- On ARCHER compute nodes, OS unlikely to have any info relevant

to other users

48

Summary

• At its core, Meltdown is remarkably simple

• Completely analogous to everyday office situation

• For many years, CPU + OS design focused on speed ...

49

Acknowledgements

• Thanks to the following EPCC staff for useful

conversations:

- Stephen Booth

- Rupert Nash

- Nick Johnson

- Ally Hume

- Andy Turner

- Adrian Jackson

50

