Single-node Optimization Techniques

© Cray Inc 2013



® e
o

° )
\

Doesn't the compiler do all this for me?

e Not yet...
e (standard answer, unchanged for last 50 or so years)

e You can make a big difference to code performance
e Helping the compiler spot optimisation opportunities
e Using specialist knowledge of your application

e Removing obscure (and antiqgue) "optimisations" in older code
e simple code is always best, until proved otherwise

e What we cover in this talk:
e Quick review of memory hierarchy
Cache blocking
TLB use optimisation
loop unrolling
vectorisation

e No fixed rules: optimise on case-by-case basis
e But first, check what the compiler is already doing



Memory Hierarchy RS

% !

element line No Virtual
Memory on
Cray XC30

Instructions

Addresses

Register Cache RAM Virtual

<
Faster speed
>

Larger size



Memory Hierarchy

As you go further up the memory hierarchy, capacity and latency increase

: L1 data or
Registers  instruction
1 KB Cache

1 cycle KB
2 cycles

L2/L3 cache
MB
15 cycles




Cache Lines

Typically more than one element at once is transferred

registers

register = a[0]




Bad Cache Alignment

C=RANY
U

CrayPAT profiling with export PAT RT_HWPC=2 (L1 and L2 metrics)

Time$

Time

Calls

PAPI_L1 DCA

DC_L2 REFILL MOESI
DC_SYS_REFILL_MOESI

BU L2 REQ DC

User time

Utilization rate

L1 Data cache misses
LD & ST per D1 miss

D1 cache hit ratio

LD & ST per D2 miss

D2 cache hit ratio

L2 cache hit ratio
Memory to D1 refill
Memory to D1 bandwidth
L2 to Dcache bandwidth

455.
49 .
.666M/sec
74 .
.000 secs

50.

433M/sec
641M/sec

628M/sec

308M/sec

.666M/sec
40.
3029.

669MB/sec
859MB/sec

0.2%

0.000003

1
1367
149

2

224
7804
97.9%
151
9.05
89.0%
683.50
99.1%
98.7%
2

128
9536

\
\

cf: 8

ops/miss
ops/miss
lines

bytes
bytes



Good Cache Alignment

Time$%

Time

Calls

PAPI L1 DCA

DC L2 REFILL MOESI
DC_SYS REFILL MOESI
BU L2 REQ DC

User time
Utilization rate

L1l
LD
D1
LD
D2
L2

Data cache misses
& ST per D1 miss
cache hit ratio
& ST per D2 miss
cache hit ratio
cache hit ratio

Memory to D1 refill
Memory to D1 bandwidth

L2

to Dcache bandwidth

689.
33.

34.
.000 secs

33.

2053.

986M/sec
645M/sec

163M/sec

645M/sec

542MB/sec

0.

1%

0.000002

1

1333

65
0
66

5023

95.

20.
95.
1333.
100.
100.

1%
65
51

(o)

©°

00

o

0%
0
0

4160

® e
C=RANY
U

ops
ops
ops
req
cycles

misses
ops/miss

ops/miss
lines

bytes
bytes



Cache blocking

e A combination of:
e strip mining (also called loop blocking, loop tiling...)
e |oop interchange
e Designed to increase data reuse:
e temporal reuse: reuse array elements already referenced
e spatial reuse: good use of cache lines
e Many ways to block any given loop nest
e Which loops should be blocked?
e What block size(s) will work best?
e Analysis can reveal which ways are beneficial
e How big is your cache?
e L1is 32kB on lvybridge.
e How many cache lines can it hold?
e each line typically 64B, so

e How many cache lines are needed per loop iteration?
o

e But trial-and-error is probably faster
e Or autotuning of the code



Cache Use In Stencil Computations CRAY
DO j =1, 8 NSO
DO i =1, 16

a =u(i-1,j) + u(i+1,j) &
u(i,j-1) + u(i,j+1) &

4*u(1i,j)

o+

ENDDO
ENDDO

e Imagine a CPU architecture where:
e each cache line holds 4 array elements
e cache can hold 12 lines of data
e Each execution of i-loop needs:
e 3*CEILINGJ[(16+2)/4]=15 cache lines

e No cache reuse b/w j-loop iterations
e Because 15 is greater than 12
e Iiteration | loaded u(i:i+3,3j+1) (4 elements)
e iteration j+1 could reuse this (for central term)
e but it's already been evicted from the cache

e Cache misses per loopnest iteration
e 8%15=120




Blocking to Increase Reuse cRAY

e Block the inner loop

DO ib = 1, 16, 4
DO j = 1, 8
DO i = ib, ib + 4-1
a = u(i-1,3j) + u(i+1,j) &
+ u(i,j-1) + u(i,j+1) &
- 4*u(i,j)
ENDDO
ENDDO
ENDDO

I

e Cachelines per j-loop iteration:
e 3*CEILINGI[(4+2)/4]=6 cache lines
e So can hold data for 4 j-values in cache
o because (4+2)*CEILING[(4+2)/4]=12
e Cache liner per ib-loop iteration
o (8+2)*CEILING[(4+2)/4]=20
e Cache misses per loopnest iteration
e (16/4)*20=80
e reduced from 120

e Better temporal locality




Blocking to Increase Reuse cRAY

° \
\

e |terate over 4x4 blocks (or "tiles")

DO jb = 1, 8, 4
DO ib = 1, 16, 4
DO j = jb, jb + 4-1
DO i = ib, ib + 4-1
a =u(i-1,j) + u(i+i,j) &
+ u(i,j-1) + u(i,j+1) &
- 4*U(i,j)
ENDDO
ENDDO
ENDDO
ENDDO

e Cache lines per tile:
e (4+2)*CEILING[(4+2)/4]=12
e Can reuse for (some of) next tile
e Cache lines for each jb-iteration
o (4+2)*CEILING[(16+2)/4]=30
e Cache misses per loopnest iteration
e (8/4)*30=60
e reduced from 80
e Wwhich was reduced from 120
e Better spatial locality




Cache blocking with Cray Directives RS

° \

CCE blocks well, but it sometimes blocks better with help

Original loopnest |Loopnest with help Equivalent explicit code

ldir$ blockable(j,k) dg kbb= 6,nz-5,16
E . ) o jb = 6,ny-5,16
ldir$ blockingsize(16) do K = kb, MIN(Kb+16-1,n2-5)
do k = 6, nz-5 do k = 6, nz-5 do j = jb,MIN(jb+16-1,ny-5)
do j = 6, ny-5 do j = 6, ny-5 do i = 6, nx-5
do i = 6, nx-5 do i = 6, nx-5 | stencil
. . enddo
| stencil | stenc1il enddo
enddo enddo enddo
enddo enddo enddo
enddo enddo SnEee

Use the -hlist=a option to get a loopmark listing
- ldentifies which loops were blocked
- Gives the block size the compiler chose
- See <source>.Ist file



Further cache optimisations

e If multiple loopnests process a large array

e First element of array will be out of cache when start second loopnest

e Improving cache use

e Consider fusing the loopnests
e Completely: just have one loopnest
e Partial: have one outer loop, containing multiple inner loops

Original code Complete fusion Partial fusing

do j = 1, Nj

do i =1, Ni
a(i,Jj)=b(i,j)*2
enddo

enddo

do j = 1, Nj

do i =1, Ni
a(i,j)=a(i,j)+1
enddo

enddo

do j = 1, Nj

do i =1, Ni
a(i,j)=b(i,j)*2
a(i,j)=a(i,j)+1
enddo

enddo

do j = 1, Nj

do i =1, Ni
a(i,j)=b(i,j)*2
enddo

do i =1, Ni
a(i,j)=a(i,j)+1
enddo

enddo



Further cache optimisations \

e Perhaps cache block before fusing
e Fuse one or more of the outer blocking loops \

e If multiple subprograms process the array
e Remove one or more outer loops (or all loops) from subprograms
e Haul loop into parent routine, pass in index values instead
e Might want to ensure that compiler is inlining this routine
e This technique is very useful if you want to use OpenMP/OpenACC

e Beware of Fortran Original code After hauling

e array syntax often bad CALL subl(a,b) do j = 1, Nj
e a(:,:)=b(:,:)*2 CALL sub2(a) CALL subl(a,b,j)
o a(:,:)=a(:,:)+1 CALL sub2(a,j)
e compiler unlikely to SUBR(?UTINI% subl(a) enddo
fuse any loops do j=1,NJ .
do i=1,Ni SUBROUTINE subl(a,j)
a(i,j)=b(i,j)*2 do i=1,Ni
enddo a(i,j)=b(i,j)*2
enddo enddo

END SUBROUTINE subl END SUBROUTINE subl



Virtual Memory vs Physical Memory \

Virtual Memory Address Translation Physical Memory

e Translation page table is stored in main memory

e Each memory access logically takes twice as long — once to find the
physical address, once to get the actual data

e Use a hardware cache of least recently used addresses
e Called a Translation Lookaside Buffer or TLB
e You should aim to reuse this cache wherever possible



C=RANY
The TLB cache - = new TLB entry created
)

bad for the TLB - = address already mapped
non unit stride through the data

\

physical memory

VERY bad for the TLB
strides through the data which exceed the page size

physical memory




Optimising for TLB

e Aim to reuse data on a page
e |.e. treat similarly to a cache \

e Standard-sized pages are 4kB
e But you can use larger "huge" pages
e 128kB, 512kB, 2MB,... 64MB
e Almost always benefit HPC applications

e regular data accesses)
e huge pages give fewer TLB misses

e Huge pages can also help communication performance

e To use huge pages (see man intro_hugepages)
e Load chosen craype-hugepages* module
e See module avail craype-hugepages for list of available options
e 2M or 8M are usually most successful on Cray XC30
e Compile as before
e Make sure this module is also loaded in PBS jobscript

e quick cheat: can load a different-sized hugepages module at runtime
e compile-time module enables hugepages, runtime one determines actual size



Loop Unrolling (Theory) \

e Increases the work per loop iteration

e Mmore computation per loop iteration
e can pipeline better in CPU
e More opportunities for vectorisation

e higher computational intensity
e more floating point operations per memory operation (load or store)
e Combination of loop blocking and unwinding

e may completely unwind the loop
e i.e. replace by complete set of scalar instructions

Original code After partial unrolling

do i=1,N do i=1,N,4
a(i)=a(i) + b(i) a(i) =a(i) + b(i)
enddo a(i+l)=a(i+1) + b(i+1)
a(i+2)=a(i+2) + b(i+2)
a(i+3)=a(i+3) + b(i+3)

enddo
<cleanup if N%4!=0>



® e
[l — PO
o

) )
\

Loop Unrolling (Reality)

e Most optimising compilers will unroll loops automatically
e But probably will concentrate on inner loops

e When might we help?
e |f the compiler didn't unroll (and should have done)
e When the compiler doesn't know about tripcounts (this loop is small)
e When we have a small outer loop
e maybe move it to be the innermost loop and completely unroll

e Avoid manually unrolling loops where possible
e reduces portability
e optimal loop length for Interlagos may not suit Sandybridge

e Instead ask compiler to do it using directives, e.g.:
e CCE: Force unrolling loop, optional i times.
IDIR$ unroll (i)
#pragma CRI unroll i

e PGI: Force unrolling loop, optional i times.
CPGI$ wunroll n:i
#pragma loop unroll n:i



® e
[l — PO
o

° \

\
e Modern CPUs can perform multiple operations each cycle
e Use special SIMD (Single Instruction Multiple Data) instructions \
e €.9. SSE, AVX
e Operate on a "vector" of data
e typically 2 or 4 double precision floats (on Ivybridge)
e Potentially gives speedup in floating point operations

e Usually only one loop is vectorisable in loopnest
e And most compilers only consider inner loop

Vector Instructions (Vectorisation)

e Optimising compilers will use vector instructions
e Relies on code being vectorisable

e Orin a form that the compiler can convert to be vectorisable
e Some compilers are better at this than others



® e
o

) )
\

Helping vectorisation

e |s there a good reason for this?

e There is an overhead in setting up vectorisation; maybe it's not worth it
e Could you unroll inner (or outer) loop to provide more work?

\

e Does the loop have dependencies?

e Iinformation carried between iterations
e ©.0. counter: total = total + a(i)

e NO:

e Tell the compiler that it is safe to vectorise
e !dir$ IVDEP directive above loop (CCE, bur works with most compilers)
e C99: restrict keyword (or compile with -hrestrict=a with CCE)
e Yes:
e Rewrite code to use algorithm without dependencies, e.g.
e promote loop scalars to vectors (single dimension array)
e use calculated values (based on loop index) rather than iterated counters, e.g.
e Replace: count = count + 2; a(count) = ...
e By: a(2*i) = ...
e move if statements outside the inner loop
e Mmay need temporary vectors to do this
e If you need to do too much extra work to vectorise, may not be worth it.



When does the Cray Compiler vectorise?

e The Cray compiler will only vectorise loops
e Constant strides are best, indirect addressing is bad
e Can vectorise across inlined functions ‘
e Needs to know loop tripcount (but only at runtime)
e do/while loops should be avoided
e No recursion allowed
e if you have this, consider rewriting the loop
e If you can't vectorise the entire loop, consider splitting it
e S0 as much of the loop is vectorised as possible

e Always check the compiler output to see what it did

e CCE: -hlist=a

e GNU: -ftree-vectorizer-verbose=1

o PGI: -Minfo

e or (for the hard core) check the assembler generated

e Clues from CrayPAT's HWPC measurements

e export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP
e Complicated, but look for ratio of operations/instructions > 1
e expect 4 for pure AVX with double precision floats



Let's consider a non-vectorisable loop

16.
17.
18.
19.

21.
22.

/ Look further down for associated messages

------- < do j=1,N

X = xinit
r4----< do i=1,N
r4 X = X + vexpr(i,j)
r4 y(i) = y(i) + x
r4----> end do
------- > end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16
A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18
A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop\gtarting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

For more info, type:
explain ftn-6254




.- : C=RANY

Now make a small modification \

38.  Vf------ < doi=1,N N,

39. Vf x(i) z _xinit X promoted to vector:

40. Vf------ > end d° —| + trade slightly more memory |

41. . » for better performance

42, ir4----- < do j = 1,N

43, ird if--< do i = 1,N

a4. ird if x(i) = x(i) + vexpr(i,j)

45, irg if y(i) = y(i) + x(i)

46. ird4 if--> end do 1.089ms

47. ir4----- > end do g

ftn-6007 ftn: SCALAR File = bufpack.F90, Line =42
A loop starting at line 42 was interchanged with the loop starting at line 43.
ftn-6004 ftn: SCALAR File = bufpack.F90, Line =43
A loop starting at line 43 was fused with the loop starting at line 38.
ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38
A loop starting at line 38 was vectorized.
ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42 /
A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line =42

A loop starting at line 42 was unrolled 4 times.

N.B. outer loop
vectorisation here




Are there any questions?



