
Single-node Optimization Techniques

© Cray Inc 2013

Doesn't the compiler do all this for me?

● Not yet...
● (standard answer, unchanged for last 50 or so years)

● You can make a big difference to code performance
● Helping the compiler spot optimisation opportunities

● Using specialist knowledge of your application

● Removing obscure (and antique) "optimisations" in older code
● simple code is always best, until proved otherwise

● What we cover in this talk:
● Quick review of memory hierarchy

● Cache blocking

● TLB use optimisation

● loop unrolling

● vectorisation

● No fixed rules: optimise on case-by-case basis
● But first, check what the compiler is already doing

Memory Hierarchy

CPU

Data

Instructions

Addresses

Register Cache RAM Virtual

Faster speed

Larger size

page

line element No Virtual

Memory on

Cray XC30

Memory Hierarchy

CPU

L1 data or

instruction

Cache

KB

2 cycles

As you go further up the memory hierarchy, capacity and latency increase

Registers

1 KB

1 cycle

L2/L3 cache

MB

15 cycles

Memory

GB

300 cycles
Disk

TB

10M cycles

Cache Lines

CPU

registers cache

Typically more than one element at once is transferred

x = a[0]

move a[0]...a[n]

register = a[0]

fast
slow

Bad Cache Alignment

CrayPAT profiling with export PAT_RT_HWPC=2 (L1 and L2 metrics)

Time% 0.2%

Time 0.000003

Calls 1

PAPI_L1_DCA 455.433M/sec 1367 ops

DC_L2_REFILL_MOESI 49.641M/sec 149 ops

DC_SYS_REFILL_MOESI 0.666M/sec 2 ops

BU_L2_REQ_DC 74.628M/sec 224 req

User time 0.000 secs 7804 cycles

Utilization rate 97.9%

L1 Data cache misses 50.308M/sec 151 misses

LD & ST per D1 miss 9.05 ops/miss

D1 cache hit ratio 89.0%

LD & ST per D2 miss 683.50 ops/miss

D2 cache hit ratio 99.1%

L2 cache hit ratio 98.7%

Memory to D1 refill 0.666M/sec 2 lines

Memory to D1 bandwidth 40.669MB/sec 128 bytes

L2 to Dcache bandwidth 3029.859MB/sec 9536 bytes

cf: 8

Good Cache Alignment
Time% 0.1%

Time 0.000002

Calls 1

PAPI_L1_DCA 689.986M/sec 1333 ops

DC_L2_REFILL_MOESI 33.645M/sec 65 ops

DC_SYS_REFILL_MOESI 0 ops

BU_L2_REQ_DC 34.163M/sec 66 req

User time 0.000 secs 5023 cycles

Utilization rate 95.1%

L1 Data cache misses 33.645M/sec 65 misses

LD & ST per D1 miss 20.51 ops/miss

D1 cache hit ratio 95.1%

LD & ST per D2 miss 1333.00 ops/miss

D2 cache hit ratio 100.0%

L2 cache hit ratio 100.0%

Memory to D1 refill 0 lines

Memory to D1 bandwidth 0 bytes

L2 to Dcache bandwidth 2053.542MB/sec 4160 bytes

Cache blocking

● A combination of:
● strip mining (also called loop blocking, loop tiling...)
● loop interchange

● Designed to increase data reuse:
● temporal reuse: reuse array elements already referenced
● spatial reuse: good use of cache lines

● Many ways to block any given loop nest
● Which loops should be blocked?
● What block size(s) will work best?

● Analysis can reveal which ways are beneficial
● How big is your cache?

● L1 is 32kB on Ivybridge.

● How many cache lines can it hold?
● each line typically 64B, so

● How many cache lines are needed per loop iteration?
● ...

● But trial-and-error is probably faster
● or autotuning of the code

Cache Use in Stencil Computations
DO j = 1, 8

 DO i = 1, 16

 a = u(i-1,j) + u(i+1,j) &

 + u(i,j-1) + u(i,j+1) &

 - 4*u(i,j)

 ENDDO

ENDDO

● Imagine a CPU architecture where:
● each cache line holds 4 array elements

● cache can hold 12 lines of data

● Each execution of i-loop needs:
● 3*CEILING[(16+2)/4]=15 cache lines

● No cache reuse b/w j-loop iterations
● Because 15 is greater than 12

● iteration j loaded u(i:i+3,j+1) (4 elements)

● iteration j+1 could reuse this (for central term)

● but it's already been evicted from the cache

● Cache misses per loopnest iteration
● 8*15 = 120

3 4 6 7 9 10 12 13 15 18 30 120

i=1

i=16

j
=
1

j
=
8

Blocking to Increase Reuse

● Block the inner loop

DO ib = 1, 16, 4
 DO j = 1, 8
 DO i = ib, ib + 4-1
 a = u(i-1,j) + u(i+1,j) &
 + u(i,j-1) + u(i,j+1) &
 - 4*u(i,j)
 ENDDO
 ENDDO
ENDDO

● Cache lines per j-loop iteration:
● 3*CEILING[(4+2)/4]=6 cache lines
● So can hold data for 4 j-values in cache

● because (4+2)*CEILING[(4+2)/4]=12

● Cache liner per ib-loop iteration
● (8+2)*CEILING[(4+2)/4]=20

● Cache misses per loopnest iteration
● (16/4)*20=80
● reduced from 120

● Better temporal locality

3 4 6 7 8 9 10 11 12 20 80

i=1

i=13

j
=
1

j
=
8

i=5

i=9

Blocking to Increase Reuse

● Iterate over 4×4 blocks (or "tiles")

DO jb = 1, 8, 4
 DO ib = 1, 16, 4
 DO j = jb, jb + 4-1
 DO i = ib, ib + 4-1
 a = u(i-1,j) + u(i+1,j) &
 + u(i,j-1) + u(i,j+1) &
 - 4*u(i,j)
 ENDDO
 ENDDO
 ENDDO
ENDDO

● Cache lines per tile:
● (4+2)*CEILING[(4+2)/4]=12
● Can reuse for (some of) next tile

● Cache lines for each jb-iteration
● (4+2)*CEILING[(16+2)/4]=30

● Cache misses per loopnest iteration
● (8/4)*30=60
● reduced from 80

● which was reduced from 120

● Better spatial locality
3 4 6 7 8 9 10 11 12 13 15 16 17 18 30 60

i=1

i=13

j
=
1

j
=
5

i=5

i=9

Cache blocking with Cray Directives

CCE blocks well, but it sometimes blocks better with help

Use the –hlist=a option to get a loopmark listing

• Identifies which loops were blocked

• Gives the block size the compiler chose

• See <source>.lst file

Original loopnest Loopnest with help Equivalent explicit code

do k = 6, nz-5
 do j = 6, ny-5
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
enddo

!dir$ blockable(j,k)
!dir$ blockingsize(16)
do k = 6, nz-5
 do j = 6, ny-5
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
enddo

do kb = 6,nz-5,16
 do jb = 6,ny-5,16
 do k = kb,MIN(kb+16-1,nz-5)
 do j = jb,MIN(jb+16-1,ny-5)
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
 enddo
 enddo
enddo

Further cache optimisations

● If multiple loopnests process a large array
● First element of array will be out of cache when start second loopnest

● Improving cache use
● Consider fusing the loopnests

● Completely: just have one loopnest

● Partial: have one outer loop, containing multiple inner loops

Original code Complete fusion Partial fusing

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=a(i,j)+1
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 a(i,j)=a(i,j)+1
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 enddo
 do i = 1, Ni
 a(i,j)=a(i,j)+1
 enddo
enddo

Further cache optimisations

● Perhaps cache block before fusing
● Fuse one or more of the outer blocking loops

● If multiple subprograms process the array
● Remove one or more outer loops (or all loops) from subprograms

● Haul loop into parent routine, pass in index values instead

● Might want to ensure that compiler is inlining this routine

● This technique is very useful if you want to use OpenMP/OpenACC

● Beware of Fortran
● array syntax often bad

● a(:,:)=b(:,:)*2
● a(:,:)=a(:,:)+1

● compiler unlikely to

 fuse any loops

Original code After hauling

CALL sub1(a,b)
CALL sub2(a)

SUBROUTINE sub1(a)
 do j=1,Nj
 do i=1,Ni
 a(i,j)=b(i,j)*2
 enddo
 enddo
END SUBROUTINE sub1

do j = 1, Nj
 CALL sub1(a,b,j)
 CALL sub2(a,j)
enddo

SUBROUTINE sub1(a,j)
 do i=1,Ni
 a(i,j)=b(i,j)*2
 enddo
END SUBROUTINE sub1

Virtual Memory vs Physical Memory

● Translation page table is stored in main memory

● Each memory access logically takes twice as long – once to find the

physical address, once to get the actual data

● Use a hardware cache of least recently used addresses

● Called a Translation Lookaside Buffer or TLB

● You should aim to reuse this cache wherever possible

The TLB cache

physical memory

bad for the TLB

non unit stride through the data

= new TLB entry created

= address already mapped

physical memory

VERY bad for the TLB

strides through the data which exceed the page size

VM page

Optimising for TLB

● Aim to reuse data on a page
● i.e. treat similarly to a cache

● Standard-sized pages are 4kB

● But you can use larger "huge" pages
● 128kB, 512kB, 2MB,... 64MB

● Almost always benefit HPC applications
● regular data accesses)
● huge pages give fewer TLB misses

● Huge pages can also help communication performance

● To use huge pages (see man intro_hugepages)
● Load chosen craype-hugepages* module

● See module avail craype-hugepages for list of available options
● 2M or 8M are usually most successful on Cray XC30

● Compile as before
● Make sure this module is also loaded in PBS jobscript

● quick cheat: can load a different-sized hugepages module at runtime
● compile-time module enables hugepages, runtime one determines actual size

Loop Unrolling (Theory)

● Increases the work per loop iteration
● more computation per loop iteration

● can pipeline better in CPU

● more opportunities for vectorisation

● higher computational intensity
● more floating point operations per memory operation (load or store)

● Combination of loop blocking and unwinding
● may completely unwind the loop

● i.e. replace by complete set of scalar instructions

Original code After partial unrolling

do i=1,N
 a(i)=a(i) + b(i)
enddo

do i=1,N,4
 a(i) =a(i) + b(i)
 a(i+1)=a(i+1) + b(i+1)
 a(i+2)=a(i+2) + b(i+2)
 a(i+3)=a(i+3) + b(i+3)
enddo
<cleanup if N%4!=0>

Loop Unrolling (Reality)

● Most optimising compilers will unroll loops automatically
● But probably will concentrate on inner loops

● When might we help?

● If the compiler didn't unroll (and should have done)
● When the compiler doesn't know about tripcounts (this loop is small)
● When we have a small outer loop

● maybe move it to be the innermost loop and completely unroll

● Avoid manually unrolling loops where possible

● reduces portability
● optimal loop length for Interlagos may not suit Sandybridge

● Instead ask compiler to do it using directives, e.g.:

● CCE: Force unrolling loop, optional i times.
 !DIR$ unroll (i)
 #pragma _CRI unroll i

● PGI: Force unrolling loop, optional i times.
 CPGI$ unroll n:i
 #pragma loop unroll n:i

Vector Instructions (Vectorisation)

● Modern CPUs can perform multiple operations each cycle
● Use special SIMD (Single Instruction Multiple Data) instructions

● e.g. SSE, AVX

● Operate on a "vector" of data
● typically 2 or 4 double precision floats (on Ivybridge)

● Potentially gives speedup in floating point operations

● Usually only one loop is vectorisable in loopnest
● And most compilers only consider inner loop

● Optimising compilers will use vector instructions
● Relies on code being vectorisable

● Or in a form that the compiler can convert to be vectorisable
● Some compilers are better at this than others

Helping vectorisation

● Is there a good reason for this?
● There is an overhead in setting up vectorisation; maybe it's not worth it

● Could you unroll inner (or outer) loop to provide more work?

● Does the loop have dependencies?
● information carried between iterations

● e.g. counter: total = total + a(i)

● No:
● Tell the compiler that it is safe to vectorise

● !dir$ IVDEP directive above loop (CCE, bur works with most compilers)

● C99: restrict keyword (or compile with -hrestrict=a with CCE)

● Yes:
● Rewrite code to use algorithm without dependencies, e.g.

● promote loop scalars to vectors (single dimension array)

● use calculated values (based on loop index) rather than iterated counters, e.g.

● Replace: count = count + 2; a(count) = ...

● By: a(2*i) = ...

● move if statements outside the inner loop

● may need temporary vectors to do this

● If you need to do too much extra work to vectorise, may not be worth it.

When does the Cray Compiler vectorise?

● The Cray compiler will only vectorise loops
● Constant strides are best, indirect addressing is bad
● Can vectorise across inlined functions
● Needs to know loop tripcount (but only at runtime)

● do/while loops should be avoided

● No recursion allowed
● if you have this, consider rewriting the loop

● If you can't vectorise the entire loop, consider splitting it
● so as much of the loop is vectorised as possible

● Always check the compiler output to see what it did
● CCE: -hlist=a
● GNU: -ftree-vectorizer-verbose=1
● PGI: -Minfo
● or (for the hard core) check the assembler generated

● Clues from CrayPAT's HWPC measurements
● export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP
● Complicated, but look for ratio of operations/instructions > 1

● expect 4 for pure AVX with double precision floats

Let's consider a non-vectorisable loop

16. + 1-------< do j = 1,N
17. 1 x = xinit
18. + 1 r4----< do i = 1,N
19. 1 r4 x = x + vexpr(i,j)
20. 1 r4 y(i) = y(i) + x
21. 1 r4----> end do
22. 1-------> end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

 A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18

 A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

 A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms

For more info, type:
explain ftn-6254

Look further down for associated messages

Now make a small modification
38. Vf------< do i = 1,N
39. Vf x(i) = xinit
40. Vf------> end do
41.
42. ir4-----< do j = 1,N
43. ir4 if--< do i = 1,N
44. ir4 if x(i) = x(i) + vexpr(i,j)
45. ir4 if y(i) = y(i) + x(i)
46. ir4 if--> end do
47. ir4-----> end do

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

 A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

 A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

 A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was unrolled 4 times.

1.089ms

-37%

N.B. outer loop

vectorisation here

x promoted to vector:

• trade slightly more memory

• for better performance

Are there any questions?

