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Doesn't the compiler do all this for me? 

● Not yet... 
● (standard answer, unchanged for last 50 or so years) 

 

● You can make  a big difference to code performance 
● Helping the compiler spot optimisation opportunities 

● Using specialist knowledge of your application 

● Removing obscure (and antique) "optimisations" in older code 
● simple code is always best, until proved otherwise 

 

● What we cover in this talk: 
● Quick review of memory hierarchy 

● Cache blocking 

● TLB use optimisation 

● loop unrolling 

● vectorisation 

 

● No fixed rules: optimise on case-by-case basis 
● But first, check what the compiler is already doing 
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Cache Lines 

CPU 

registers cache 

Typically more than one element at once is transferred 

x = a[0] 

move a[0]...a[n] 

register = a[0] 

fast 
slow 



Bad Cache Alignment 

CrayPAT profiling with export PAT_RT_HWPC=2 (L1 and L2 metrics) 
 

Time%                                       0.2% 

Time                                    0.000003 

Calls                                          1 

PAPI_L1_DCA              455.433M/sec       1367 ops 

DC_L2_REFILL_MOESI        49.641M/sec        149 ops 

DC_SYS_REFILL_MOESI        0.666M/sec          2 ops 

BU_L2_REQ_DC              74.628M/sec        224 req 

User time                  0.000 secs       7804 cycles 

Utilization rate                           97.9% 

L1 Data cache misses      50.308M/sec        151 misses 

LD & ST per D1 miss                         9.05 ops/miss 

D1 cache hit ratio                         89.0% 

LD & ST per D2 miss                       683.50 ops/miss 

D2 cache hit ratio                         99.1% 

L2 cache hit ratio                         98.7% 

Memory to D1 refill        0.666M/sec          2 lines 

Memory to D1 bandwidth    40.669MB/sec       128 bytes 

L2 to Dcache bandwidth  3029.859MB/sec      9536 bytes 

cf: 8 



Good Cache Alignment 
Time%                                       0.1% 

Time                                    0.000002 

Calls                                          1 

PAPI_L1_DCA              689.986M/sec       1333 ops 

DC_L2_REFILL_MOESI        33.645M/sec         65 ops 

DC_SYS_REFILL_MOESI                            0 ops 

BU_L2_REQ_DC              34.163M/sec         66 req 

User time                  0.000 secs       5023 cycles 

Utilization rate                           95.1% 

L1 Data cache misses      33.645M/sec         65 misses 

LD & ST per D1 miss                        20.51 ops/miss 

D1 cache hit ratio                         95.1% 

LD & ST per D2 miss                      1333.00 ops/miss 

D2 cache hit ratio                        100.0% 

L2 cache hit ratio                        100.0% 

Memory to D1 refill                            0 lines 

Memory to D1 bandwidth                         0 bytes 

L2 to Dcache bandwidth  2053.542MB/sec      4160 bytes 



Cache blocking 

● A combination of: 
● strip mining (also called loop blocking, loop tiling...) 
● loop interchange 

● Designed to increase data reuse: 
● temporal reuse: reuse array elements already referenced 
● spatial reuse: good use of cache lines 

● Many ways to block any given loop nest 
● Which loops should be blocked? 
● What block size(s)  will work best? 

● Analysis can reveal which ways are beneficial 
● How big is your cache?  

● L1 is 32kB on Ivybridge. 

● How many cache lines can it hold?  
● each line typically 64B, so  

● How many cache lines are needed per loop iteration? 
● ... 

● But trial-and-error is probably faster 
● or autotuning of the code 



Cache Use in Stencil Computations 
DO j = 1, 8 

   DO i = 1, 16 

      a = u(i-1,j) + u(i+1,j) & 

        + u(i,j-1) + u(i,j+1) & 

        - 4*u(i,j) 

   ENDDO 

ENDDO 
 

● Imagine a CPU architecture where: 
● each cache line holds 4 array elements 

● cache can hold 12 lines of data 

● Each execution of i-loop needs:  
● 3*CEILING[(16+2)/4]=15 cache lines 

● No cache reuse b/w j-loop iterations 
● Because 15 is greater than 12 

● iteration j loaded u(i:i+3,j+1) (4 elements) 

● iteration j+1 could reuse this (for central term) 

● but it's already been evicted from the cache 

● Cache misses per loopnest iteration 
● 8*15 = 120 
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Blocking to Increase Reuse 

● Block the inner loop 
 

DO ib = 1, 16, 4 
   DO j = 1, 8 
      DO i = ib, ib + 4-1 
         a = u(i-1,j) + u(i+1,j) & 
           + u(i,j-1) + u(i,j+1) & 
           - 4*u(i,j) 
      ENDDO 
   ENDDO 
ENDDO 
 

● Cache lines per j-loop iteration: 
● 3*CEILING[(4+2)/4]=6 cache lines 
● So can hold data for 4 j-values in cache 

● because (4+2)*CEILING[(4+2)/4]=12 

● Cache liner per ib-loop iteration 
● (8+2)*CEILING[(4+2)/4]=20 

● Cache misses per loopnest iteration 
● (16/4)*20=80 
● reduced from 120 

● Better temporal locality 
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Blocking to Increase Reuse 

● Iterate over 4×4 blocks (or "tiles") 
 

DO jb = 1, 8, 4 
   DO ib = 1, 16, 4 
      DO j = jb, jb + 4-1 
         DO i = ib, ib + 4-1 
            a = u(i-1,j) + u(i+1,j) & 
              + u(i,j-1) + u(i,j+1) & 
              - 4*u(i,j) 
         ENDDO 
      ENDDO 
   ENDDO 
ENDDO 
 

● Cache lines per tile: 
● (4+2)*CEILING[(4+2)/4]=12 
● Can reuse for (some of) next tile 

● Cache lines for each jb-iteration 
● (4+2)*CEILING[(16+2)/4]=30 

● Cache misses per loopnest iteration 
● (8/4)*30=60 
● reduced from 80 

● which was reduced from 120 

● Better spatial locality 
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Cache blocking with Cray Directives 

CCE blocks well, but it sometimes blocks better with help 

 

 

 

 

 

 

 

 

 
Use the –hlist=a option to get a loopmark listing 

• Identifies which loops were blocked 

• Gives the block size the compiler chose 

• See <source>.lst file 

 

Original loopnest Loopnest with help Equivalent explicit code 

  
 
do k = 6, nz-5 
 do j = 6, ny-5 
  do i = 6, nx-5 
   ! stencil 
  enddo 
 enddo 
enddo 

!dir$ blockable(j,k) 
!dir$ blockingsize(16) 
do k = 6, nz-5 
 do j = 6, ny-5 
  do i = 6, nx-5 
   ! stencil 
  enddo 
 enddo 
enddo 

do kb = 6,nz-5,16 
 do jb = 6,ny-5,16 
  do k = kb,MIN(kb+16-1,nz-5) 
   do j = jb,MIN(jb+16-1,ny-5) 
    do i = 6, nx-5 
     ! stencil 
    enddo 
   enddo 
  enddo 
 enddo 
enddo 



Further cache optimisations 

● If multiple loopnests process a large array 
● First element of array will be out of cache when start second loopnest 

● Improving cache use 
● Consider fusing the loopnests 

● Completely: just have one loopnest 

● Partial: have one outer loop, containing multiple inner loops 

Original code Complete fusion Partial fusing 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
 enddo 
enddo 
 
do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=a(i,j)+1   
 enddo 
enddo 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
  a(i,j)=a(i,j)+1   
 enddo 
enddo 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
 enddo 
 do i = 1, Ni 
  a(i,j)=a(i,j)+1   
 enddo 
enddo 



Further cache optimisations 

● Perhaps cache block before fusing 
● Fuse one or more of the outer blocking loops 

● If multiple subprograms process the array 
● Remove one or more outer loops (or all loops) from subprograms 

● Haul loop into parent routine, pass in index values instead 

● Might want to ensure that compiler is inlining this routine 

● This technique is very useful if you want to use OpenMP/OpenACC 

 

● Beware of Fortran 
● array syntax often bad 

● a(:,:)=b(:,:)*2 
● a(:,:)=a(:,:)+1 

● compiler unlikely to 

    fuse any loops 

 
 

Original code After hauling 

CALL sub1(a,b) 
CALL sub2(a) 
 
SUBROUTINE sub1(a) 
 do j=1,Nj 
  do i=1,Ni 
   a(i,j)=b(i,j)*2   
  enddo 
 enddo 
END SUBROUTINE sub1 

do j = 1, Nj 
 CALL sub1(a,b,j) 
 CALL sub2(a,j) 
enddo 
 
SUBROUTINE sub1(a,j) 
 do i=1,Ni 
  a(i,j)=b(i,j)*2   
 enddo 
END SUBROUTINE sub1 



Virtual Memory vs Physical Memory 

● Translation page table is stored in main memory 

● Each memory access logically takes twice as long – once to find the 

physical address, once to get the actual data 

● Use a hardware cache of least recently used addresses 

● Called a Translation Lookaside Buffer or TLB 

● You should aim to reuse this cache wherever possible 



The TLB cache 
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Optimising for TLB 

● Aim to reuse data on a page 
● i.e. treat similarly to a cache 

 
● Standard-sized pages are 4kB 

● But you can use larger "huge" pages 
● 128kB, 512kB, 2MB,... 64MB 

● Almost always benefit HPC applications 
● regular data accesses) 
● huge pages give fewer TLB misses 

● Huge pages can also help communication performance 
 

● To use huge pages (see man intro_hugepages) 
● Load chosen craype-hugepages* module 

● See module avail craype-hugepages for list of available options 
● 2M or 8M are usually most successful on Cray XC30 

● Compile as before 
● Make sure this module is also loaded in PBS jobscript 

● quick cheat: can load a different-sized hugepages module at runtime 
● compile-time module enables hugepages, runtime one determines actual size 

 
 
 
 
 



Loop Unrolling (Theory) 

● Increases the work per loop iteration 
● more computation per loop iteration  

● can pipeline better in CPU 

● more opportunities for vectorisation 

● higher computational intensity 
● more floating point operations per memory operation (load or store) 

● Combination of loop blocking and unwinding 
● may completely unwind the loop 

● i.e. replace by complete set of scalar instructions 

 

Original code After partial unrolling 

do i=1,N 
 a(i)=a(i) + b(i)   
enddo 

do i=1,N,4 
 a(i)  =a(i)   + b(i)   
 a(i+1)=a(i+1) + b(i+1)   
 a(i+2)=a(i+2) + b(i+2)   
 a(i+3)=a(i+3) + b(i+3)   
enddo 
<cleanup if N%4!=0> 



Loop Unrolling (Reality) 

● Most optimising compilers will unroll loops automatically 
● But probably will concentrate on inner loops 

 
● When might we help? 

● If the compiler didn't unroll (and should have done) 
● When the compiler doesn't know about tripcounts (this loop is small) 
● When we have a small outer loop 

● maybe move it to be the innermost loop and completely unroll 

 
● Avoid manually unrolling loops where possible 

● reduces portability  
● optimal loop length for Interlagos may not suit Sandybridge 

 
● Instead ask compiler to do it using directives, e.g.: 

● CCE: Force unrolling loop, optional i times. 
 !DIR$ unroll (i) 
 #pragma _CRI unroll i 
 
● PGI: Force unrolling loop, optional i times. 
 CPGI$  unroll n:i 
 #pragma loop unroll n:i 



Vector Instructions (Vectorisation) 

● Modern CPUs can perform multiple operations each cycle 
● Use special SIMD (Single Instruction Multiple Data) instructions 

● e.g. SSE, AVX 

● Operate on a "vector" of data  
● typically 2 or 4 double precision floats (on Ivybridge) 

● Potentially gives speedup in floating point operations 

● Usually only one loop is vectorisable in loopnest 
● And most compilers only consider inner loop 

 

● Optimising compilers will use vector instructions 
● Relies on code being vectorisable 

● Or in a form that the compiler can convert to be vectorisable 
● Some compilers are better at this than others 



Helping vectorisation 

● Is there a good reason for this?  
● There is an overhead in setting up vectorisation; maybe it's not worth it 

● Could you unroll inner (or outer) loop to provide more work? 

 

● Does the loop have dependencies? 
● information carried between iterations 

● e.g. counter: total = total + a(i) 

● No: 
● Tell the compiler that it is safe to vectorise 

● !dir$ IVDEP directive above loop (CCE, bur works with most compilers) 

● C99: restrict keyword (or compile with -hrestrict=a with CCE) 

● Yes: 
● Rewrite code to use algorithm without dependencies, e.g. 

● promote loop scalars to vectors (single dimension array) 

● use calculated values (based on loop index) rather than iterated counters, e.g. 

● Replace:  count = count + 2; a(count) = ... 

● By:  a(2*i) = ... 

● move if statements outside the inner loop 

● may need temporary vectors to do this 

● If you need to do too much extra work to vectorise, may not be worth it. 

 
 

 



When does the Cray Compiler vectorise? 

● The Cray compiler will only vectorise loops 
● Constant strides are best, indirect addressing is bad 
● Can vectorise across inlined functions 
● Needs to know loop tripcount (but only at runtime) 

● do/while loops should be avoided 

● No recursion allowed 
● if you have this, consider rewriting the loop 

● If you can't vectorise the entire loop, consider splitting it 
● so as much of the loop is vectorised as possible 

 

● Always check the compiler output  to see what it did 
● CCE:  -hlist=a 
● GNU:  -ftree-vectorizer-verbose=1 
● PGI:  -Minfo 
● or (for the hard core) check the assembler generated 

 

● Clues from CrayPAT's HWPC measurements 
● export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP 
● Complicated, but look for ratio of operations/instructions > 1 

● expect 4 for pure AVX with double precision floats 

 
 

 

 
 
 
 
 



Let's consider a non-vectorisable loop 

16.  + 1-------<   do j = 1,N 
17.    1             x = xinit 
18.  + 1 r4----<     do i = 1,N 
19.    1 r4            x = x + vexpr(i,j) 
20.    1 r4            y(i) = y(i) + x 
21.    1 r4---->     end do 
22.    1------->   end do 

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16  

  A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20. 

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18  

  A loop starting at line 18 was unrolled 4 times. 

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18  

  A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.    

1.497ms  

For more info, type: 
explain ftn-6254 

Look further down for associated messages 



Now make a small modification 
38.    Vf------<   do i = 1,N 
39.    Vf            x(i) = xinit 
40.    Vf------>   end do 
41.               
42.    ir4-----<   do j = 1,N 
43.    ir4 if--<     do i = 1,N 
44.    ir4 if          x(i) = x(i) + vexpr(i,j) 
45.    ir4 if          y(i) = y(i) + x(i) 
46.    ir4 if-->     end do 
47.    ir4----->   end do 

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was interchanged with the loop starting at line 43. 

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43  

  A loop starting at line 43 was fused with the loop starting at line 38. 

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38  

  A loop starting at line 38 was vectorized. 

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was vectorized as part of the loop starting at line 38. 

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was unrolled 4 times. 

1.089ms  

-37% 

N.B. outer loop 

vectorisation here 

x promoted to vector: 

• trade slightly more memory 

• for better performance 



Are there any questions? 


