Load balance & rank placement

© Cray Inc 2013

®e
CRANY |
it

°)
\

Motivation for load imbalance analysis

e Increasing system, software and architecture complexity

e Current trend in high end computing is to have systems with tens of
thousands of processors

e This is being accentuated with multi-core processors
e Applications have to be very well balanced In order to
perform at scale on these MPP systems

e Efficient application scaling includes a balanced use of requested
computing resources

e Desire to minimize computing resource “waste”
e l|dentify slower paths through code
e l|dentify inefficient “stalls” within an application

Example load distribution

Eile

w 090921P+hycomBase.ap2 X |

(Min, Avg, and Max

Values

wOverview X IvCaIIgraph X wloadBalance xl

PE Calls
PE #184
PE #240
PE #232
PE #213
PE #248
PE #198
PE #006
PE #145
PE #225
PE #233
PE #192
PE #144
PE #212
PE #149
PE #241
PE #185
PE #193
PE #007
PE #215
PE #203
PE #228
PE #239
PE #168
PE #000
PE #005
PE #122
PE #199
PE #148
PE #177
PE #140
PE #176
PE #220
PE #243
PE #242
PE #100
PE #214
PE #167
PE #003
PE #159
PE #210
PE #211
PE #029

Load Balance: mpi_waitall_

|

\

n
=

B8e+04

12e+02

4.3e+02

M|

1090921P+hycom8ase.ap2 (605,339 events in 23.985s)

7 I

Imbalance time

e Metric based on execution time

e It is dependent on the type of activity:
e User functions
Imbalance time = Maximum time — Average time
e Synchronization (Collective communication and barriers)
Imbalance time = Average time — Minimum time
e Ildentifies computational code regions and
synchronization calls that could benefit most from load
balance optimization

e Estimates how much overall program time could be saved
If corresponding section of code had a perfect balance
e Represents upper bound on “potential savings”

e Assumes other processes are waiting, not doing useful work while
slowest member finishes

Imbalance % :

Imbalance time v N
Max Time N-1

Imbalance% =100 X

e Represents % of resources available for parallelism that is
“wasted”

e Corresponds to % of time that rest of team is not engaged
In useful work on the given function

e Perfectly balanced code segment has imbalance of 0%
e Serial code segment has imbalance of 100%

MPI sync time \

e Measure load imbalance in programs instrumented to
trace MPI functions to determine if MPI ranks arrive at
collectives together

e Separates potential load imbalance from data transfer
e Sync times reported by default if MPI functions traced

e If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

\

®e
CRANyY
o

))
\

Causes and hints

e Need CrayPAT reports: What is causing the load
Imbalance?

e Computation
e |s decomposition appropriate?
e Would reordering ranks help?

e Communication
e |s decomposition appropriate?
e Would reordering ranks help?
e Are receives pre-posted?
e Any All-to-1 communication?

e |/O —synchronous single-writer 1/O will cause significant
load imbalance already with a couple of MPI tasks

e
cRAaY |
Rank Placement v
. .)
e The default ordering can be changed using the S
following environment variable:
e MPICH RANK_REORDER_METHOD=n \

e These are the different values that you can set it to:

e 0: Round-robin placement — Sequential ranks are placed on the
next node in the list. Placement starts over with the first node
upon reaching the end of the list.

e 1. (DEFAULT) SMP-style placement — Sequential ranks fill up
each node before moving to the next.

e 2. Folded rank placement — Similar to round-robin placement
except that each pass over the node list is in the opposite
direction of the previous pass.

e 3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

0: Round Robin Placement

1: SMP Placement (default)

2. Folded Placement

Rank Placement

e When is this useful? \

e Point-to-point communication consumes a significant fraction of
program time and a load imbalance detected

e Also shown to help for collectives (all-to-all) on sub-communicators
e To spread out 10 across nodes

3: Custom Example \

MPICH_RANK_ORDER
9,1,4,5,2,3,6-9,12,13,10,11,14,15

When MPICH_RANK_REORDER=3 is set at runtime the MPI
environment will read the MPICH_RANK_ORDER file in the
current working directory and assign ranks accordingly.

MPICH_RANK_ORDER is a file containing a comma separated

ordered list of ranges and individual rank assignments. All
ranks should be included only once.

L N)
cCRANY
o

°)
\

Rank reordering

e SO easy to experiment with that the defaults at least \
should be tested with every application...

e When is this a priori useful?

e Point-to-point communication consumes a significant fraction of
program time and a load imbalance detected

e Also shown to help for collectives (alltoall) on subcommunicators
e Spread out I/O servers across nodes

|
v

e — PO
)

o
444+
+++++

b bt ot
+++++

bbb b o
444+

Optimising 2D Boundary Swap with Custom

Rank Reorder

Each rank communicates with its N-S and E-W neighbours.

Default Rank Order: Suboptimal VU

Boundaries
with default
SMP layout

Internode
comms slower
than Intranode

comms, SO
reducing total
number will
improve
communication
performance

Default SMP layout creates 18 inter-node comm pairs per
node

® e
=AY |
‘ |

e \

Improved Customised Order using sub-cells

Boundaries with ‘
customised
layout

Internode
comms reduced
by reorganising

Into 4x2 cells.

Patterns can
often be
recognised by
CrayPAT.

Customised ordering reduces to 12 inter-nodes.
Even more effective with 3D and fatter nodes.

Using grid_order to generate custom Rank el — V-V
Order files .

The grid_order utility is used to generate a rank order
list for use by an MPI application that uses
communication between nearest neighbors in a grid.
When executed with the desired arguments, grid_order
generates rank order information in the appropriate
format and writes it to stdout. This output can then be
copied or written into a file named MPICH_RANK_ORDER
and used with the

MPICH_RANK_REORDER_METHOD=3

environment variable to override the default MPI rank
placement scheme and specify a custom rank
placement.

18

Combining Rank Reordering and
MPMD mode

Inspired by a real world example

IO Servers —a quick recap \

Originally codes treat compute and IO as serial tasks to be performed by all nodes

Compute 10 Compute 10 Compute 10 Compute 10

« 10 costs have grown so codes (e.g. UM) have been extended to include IO Server ranks
These ranks are dedicated to performing the 1O operations asynchronously of compute.

Compute Compute Compute Compute Compute

IO Servers ||

« Typically adding an additional 1% of nodes to act as 10 servers can eliminate almost all
O from runtime.

Requires data to be “double buffered”, so can increase overall memory overhead.
« Essentially a form of MPMD

Domain decomposition distributed over the cores on each processor

Deep East-West halos favour rows using intra-node comms (e.g. shared memory)
Best performance achieved when processor E-W decomposition is a factor or
domain E-W decomposition

Basic distribution of 10 servers (pt 2) \

e Advantages
- Easier implementation
« Efficient when number nodes = number of 1O servers

* Do not have to change the distribution of ranks across nodes
E.g, Keep 12 ranks per node, just add to the total number of ranks
Allows for much larger buffers on 10 Server tasks

* Distributes 10 traffic across the network.

e Disadvantages

« Disrupts the “nice” alignment between decomposition and
nodes

« 10 Servers restricted to the same memory limits as compute

ranks
|O Servers likely to require more memory, far less compute.

Rank Reordered Decomposition (IO Nodes)

ANNA/OR 2

Rank Reordered Decompaosition (pt 2) \

e Advantages
+ Keeps the “nice” alignment between proc decomposition and
nodes

« Can change the distribution of ranks across nodes
keep large numbers of ranks per node for compute nodes
use fewer ranks per node on IO nodes

« Can be implemented at runtime with a custom
MPICH RANK_ ORDER file

* Most efficient when number compute nodes >> number of IO
servers

e Disadvantages

« Concentrates 10 traffic on a few nodes on the systems
However, network bandwith > IO Bandwidth
|O Servers should hide any IO delays anyway.

ANNNA/NR

®e
CRANY |
it

°)
\

Providing more memory to IOS ranks

e Most applications launch with a single set of aprun
options
e Means every node (and usually every rank) is in a homogenous
environment with the same number ranks per node.
e |deal for homogenous SPMD applications

e aprun allows users to launch applications in MPMD mode

e allows users to launch applications with multiple sets options within a
single MPI_COMM_WORLD communicator

e Means ranks may have different runtime conditions, e.g. number of
ranks per node, or strict memory containment

e |0OS ranks main requirements are large memory buffers,
however compute ranks require much less.

e Using MPMD mode and rank reordering can create high
memory |IOS nodes and dense compute rank nodes.
e Also allows “nice” decomposition of compute nodes to continue

-

Example: 12x72x2 Compute Ranks +
6x2 10S Ranks

aprun -n 288 -N 12 -d 2 -j1 $EXE : -n 2 -N 2 -d 2 -S 1 -jl $EXE :
-n 288 -N 12 -d 2 -j1 $EXE : -n 2 -N 2 -d 2 -S 1 -jl SEXE :
-n 288 -N 12 -d 2 -j1 SEXE : -n 2 -N 2 -d 2 -S 1 -jl S$EXE

Thread O
Thread 1

Numa Node

72 Compute Nodes
3 10S Nodes

1.3 GB per Rank

— Thread O
— Thread 1

\ Numa Node

™

16 GB per Rank

® e
CcCRANyY

NUMA Node reordering

Reordering ranks within a node

e Short-Wave radiation
models are one of the
more expensive sub-
models

e However, only half the
earth is lit at anyone
time. This typically
translates to only half
the processors “active”
during these phases

)e

r======

e With default SMP
placement this means
otential memory
andwidth imbalance
across sockets

Socket Imbalance 1
Default SMP Placement

g EEE E— E— O O O S S S e

2 Juof o fu

O - O . . . S e e .

! v Socket 1

I I
-]l
Ranks 1 [

: -1

\ ! \

{ Socket 0 l

| |
sacive | [0 [TR IR
Ranks | I

|
| |
\ l

Load Balanced Placement

\———————

e e e e = -

1 Active
Rank

4 Active
Ranks

Socket Imbalance 2
Default SMP Placement

g EEE E— E— O O O S S S e

4 Active
Ranks

CEE

s NN EEm mmm Emm R ——
’_______N
o
-
=

- e o o =

g EEE E— E— O O O S S S e

Socket 0

II

O - O . . . S e e .

Load Balanced Placement

4 Active
Ranks

’———————~
\———————

‘———————

e e e e = -

4 Active
Rank

4 Active
Ranks

Socket Imbalance 3
Default SMP Placement

e fofafs

O - O . . . S e e .

1 .

| |

2 Active | :
Ranks 1 :
: .

\ 1

{ Socket 0 l

| |

waove [R D
Ranks I
|

: .

\ I

Load Balanced Placement

-

‘———————

e e e e = -

6 Active
Rank

4 Active
Ranks

Hybrid MPI + OpenMP?

e OpenMP may help ¥
e Able to spread workload with less overhead
e Large amount of work to go from all-MPI to (better performing) hybrid -
must accept challenge to hybridize large amount of code
e When does it pay to add OpenMP to my MPI code?
e Add OpenMP when code is network bound

e Adding OpenMP to memory bound codes may aggravate memory
bandwidth issues, but you have more control when optimizing for
cache

e Look at collective time, excluding sync time: this goes up as network
becomes a problem

e Look at point-to-point wait times: if these go up, network may be a
problem

e If an all-to-all communication pattern becomes a bottleneck,
hybridization often overcomes this

e Hybridization can be used to avoid replicated data

OpenMP thread placement CRAN

°)
\

e When running a hybrid MPI+OpenMP application, the \
optimal number of threads/MPI task depends on the
application and even input

e On the XC, one should try at least with 32x1, 16x2, perhaps also with
8x4, even 4x8 (MPI tasks x OpenMP threads per node)

e The XE system is able to place OpenMP threads
appropriately when the code is compiled with the Cray,
PGl or GNU compiler
o qubsst do e.g. "aprun -n 64 -d 32 -N 1 ./a.out” (for a 64x32=2048 core

jo
e You can use the aprun switch -S to force a certain number of MPI

tasks per a numa node (=CPU) and -ss to have the threads to allocate
memory only in the local numa node

Summary

e Load imbalance is very often the very reason for non-
scalability of an application

e It can be due to imbalanced computation or
communication, with the usual suspects being
e Bad decomposition
e All-to-one communication patterns
e Single-writer I/O

e Usually needs fixing at the source code level

e Some things for non-severe load imbalances can be done
on the environment level: try to adjust the rank placement

e Hybrid MPI+OpenMP approach often useful for
overcoming load balance problems
e Mind the thread placement when using hybrid codes!

