
Load balance & rank placement

© Cray Inc 2013

Motivation for load imbalance analysis

● Increasing system, software and architecture complexity
● Current trend in high end computing is to have systems with tens of

thousands of processors
● This is being accentuated with multi-core processors

● Applications have to be very well balanced In order to
perform at scale on these MPP systems
● Efficient application scaling includes a balanced use of requested

computing resources

● Desire to minimize computing resource “waste”
● Identify slower paths through code

● Identify inefficient “stalls” within an application

Example load distribution

-1, +1

Std Dev

marks

Min, Avg, and Max

Values

Imbalance time

● Metric based on execution time

● It is dependent on the type of activity:
● User functions

Imbalance time = Maximum time – Average time

● Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

● Identifies computational code regions and
synchronization calls that could benefit most from load
balance optimization

● Estimates how much overall program time could be saved
if corresponding section of code had a perfect balance
● Represents upper bound on “potential savings”

● Assumes other processes are waiting, not doing useful work while
slowest member finishes

Imbalance %

● Represents % of resources available for parallelism that is
“wasted”

● Corresponds to % of time that rest of team is not engaged
in useful work on the given function

● Perfectly balanced code segment has imbalance of 0%

● Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1

N
100 X

MPI sync time

● Measure load imbalance in programs instrumented to
trace MPI functions to determine if MPI ranks arrive at
collectives together

● Separates potential load imbalance from data transfer

● Sync times reported by default if MPI functions traced

● If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

Causes and hints

● Need CrayPAT reports: What is causing the load
imbalance?

● Computation
● Is decomposition appropriate?

● Would reordering ranks help?

● Communication
● Is decomposition appropriate?

● Would reordering ranks help?

● Are receives pre-posted?

● Any All-to-1 communication?

● I/O – synchronous single-writer I/O will cause significant
load imbalance already with a couple of MPI tasks

● The default ordering can be changed using the
following environment variable:
● MPICH_RANK_REORDER_METHOD=n

● These are the different values that you can set it to:
● 0: Round-robin placement – Sequential ranks are placed on the

next node in the list. Placement starts over with the first node
upon reaching the end of the list.

● 1: (DEFAULT) SMP-style placement – Sequential ranks fill up
each node before moving to the next.

● 2: Folded rank placement – Similar to round-robin placement
except that each pass over the node list is in the opposite
direction of the previous pass.

● 3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

Rank Placement

0: Round Robin Placement

Node 0

0 12

24 36

Node 1

1 13

25 37

Node 2

2 14

26 38

Node 3

3 15

27 39

Node 4

4 16

28 40

Node 5

5 17

29 41

Node 6

6 18

30 42

Node 7

7 19

31 43

Node 8

8 20

32 44

Node 9

9 21

33 45

Node 10

10 22

34 46

Node 11

11 23

35 47

Node 7

Node 8 Node 9 Node 10 Node 11

Node 6

Node 3

1: SMP Placement (default)

Node 0

0 12

24

36

Node 1

1

13

25

37

Node 2

2

14

26

38

3 15

27

39

Node 4

4

16 28

40

Node 5

5

17 29

41

6

18 30

42

7

19 31

43

8

20

32 44

9

21

33 45

10

22

34 46

11

23

35 47

Node 10 Node 11

2: Folded Placement

Node 0

0

12

24

Node 1

1

13

25

Node 2

2

26

Node 3

3

27

Node 4

4

28

Node 5

5

29

Node 6

6

30

Node 7

7

31

Node 8

8

32

Node 9

9

33

10

34

11

35

14 15

36

16

40

17 18

42

20 21 22

41

44 45 46

23

47

37 38 39

19

43

● When is this useful?
● Point-to-point communication consumes a significant fraction of

program time and a load imbalance detected

● Also shown to help for collectives (all-to-all) on sub-communicators

● To spread out IO across nodes

Rank Placement

Node 3

3: Custom Example

When MPICH_RANK_REORDER=3 is set at runtime the MPI
environment will read the MPICH_RANK_ORDER file in the
current working directory and assign ranks accordingly.

MPICH_RANK_ORDER is a file containing a comma separated
ordered list of ranges and individual rank assignments. All
ranks should be included only once.

Node 0

0 10

Node 1

1

14

Node 2

4

11

5 15

2 3

6 7

8 9

12 13

MPICH_RANK_ORDER

0,1,4,5,2,3,6-9,12,13,10,11,14,15

Rank reordering

● So easy to experiment with that the defaults at least
should be tested with every application…

● When is this a priori useful?
● Point-to-point communication consumes a significant fraction of

program time and a load imbalance detected

● Also shown to help for collectives (alltoall) on subcommunicators

● Spread out I/O servers across nodes

Optimising 2D Boundary Swap with Custom
Rank Reorder

Each rank communicates with its N-S and E-W neighbours.

0

8

1

9

16

24

17

25

2

10

3

11

18

26

19

27

32

40

33

41

34

42

35

43

4

12

5

13

20

28

21

29

6

14

7

15

22

30

23

31

36

44

37

45

38

46

39

47

Default Rank Order: Suboptimal

Default SMP layout creates 18 inter-node comm pairs per
node

0

8

1

9

16

24

17

25

2

10

3

11

18

26

19

27

32

40

33

41

34

42

35

43

4

12

5

13

20

28

21

29

6

14

7

15

22

30

23

31

36

44

37

45

38

46

39

47

Node

Boundaries

with default

SMP layout

Internode

comms slower

than Intranode

comms, so

reducing total

number will

improve

communication

performance

Improved Customised Order using sub-cells

Customised ordering reduces to 12 inter-nodes.

Even more effective with 3D and fatter nodes.

0

8

1

9

16

24

17

25

2

10

3

11

18

26

19

27

32

40

33

41

34

42

35

43

4

12

5

13

20

28

21

29

6

14

7

15

22

30

23

31

36

44

37

45

38

46

39

47

Node

Boundaries with

customised

layout

Internode

comms reduced

by reorganising

into 4x2 cells.

Patterns can

often be

recognised by

CrayPAT.

The grid_order utility is used to generate a rank order
list for use by an MPI application that uses
communication between nearest neighbors in a grid.
When executed with the desired arguments, grid_order
generates rank order information in the appropriate
format and writes it to stdout. This output can then be
copied or written into a file named MPICH_RANK_ORDER
and used with the

MPICH_RANK_REORDER_METHOD=3

environment variable to override the default MPI rank
placement scheme and specify a custom rank
placement.

Using grid_order to generate custom Rank
Order files

Cray Proprietary

18

Combining Rank Reordering and
MPMD mode

Inspired by a real world example

IO Servers – a quick recap

Compute IO Compute IO Compute IO Compute IO

Compute

IO

Compute Compute Compute

IO IO IO

Compute

IO Servers

Compute+IO

Originally codes treat compute and IO as serial tasks to be performed by all nodes

• IO costs have grown so codes (e.g. UM) have been extended to include IO Server ranks

• These ranks are dedicated to performing the IO operations asynchronously of compute.

• Typically adding an additional 1% of nodes to act as IO servers can eliminate almost all

IO from runtime.

• Requires data to be “double buffered”, so can increase overall memory overhead.

• Essentially a form of MPMD

2

0

A Standard MPI Domain Decomposition

Node 1 Node 2

Node 3

Node 0

• Domain decomposition distributed over the cores on each processor

• Deep East-West halos favour rows using intra-node comms (e.g. shared memory)

• Best performance achieved when processor E-W decomposition is a factor or

domain E-W decomposition

2

1

Basic distribution of IO servers (1 per node)

Node 4

Node 0 Node 1 Node 2

Node 3

2

2

● Advantages
• Easier implementation

• Efficient when number nodes ≈ number of IO servers

• Do not have to change the distribution of ranks across nodes
• E.g, Keep 12 ranks per node, just add to the total number of ranks

• Allows for much larger buffers on IO Server tasks

• Distributes IO traffic across the network.

● Disadvantages
• Disrupts the “nice” alignment between decomposition and

nodes

• IO Servers restricted to the same memory limits as compute
ranks

• IO Servers likely to require more memory, far less compute.

Basic distribution of IO servers (pt 2)

2

3

Rank Reordered Decomposition (IO Nodes)

Node 1 Node 2

Node 3

Node 0

Node 4

AMMW03 2

4

● Advantages
• Keeps the “nice” alignment between proc decomposition and

nodes

• Can change the distribution of ranks across nodes
• keep large numbers of ranks per node for compute nodes

• use fewer ranks per node on IO nodes

• Can be implemented at runtime with a custom
MPICH_RANK_ORDER file

• Most efficient when number compute nodes >> number of IO
servers

● Disadvantages
• Concentrates IO traffic on a few nodes on the systems

• However, network bandwith > IO Bandwidth

• IO Servers should hide any IO delays anyway.

Rank Reordered Decomposition (pt 2)

AMMW03 2

5

Providing more memory to IOS ranks

2

6

● Most applications launch with a single set of aprun
options
● Means every node (and usually every rank) is in a homogenous

environment with the same number ranks per node.

● Ideal for homogenous SPMD applications

● aprun allows users to launch applications in MPMD mode
● allows users to launch applications with multiple sets options within a

single MPI_COMM_WORLD communicator

● Means ranks may have different runtime conditions, e.g. number of
ranks per node, or strict memory containment

● IOS ranks main requirements are large memory buffers,
however compute ranks require much less.

● Using MPMD mode and rank reordering can create high
memory IOS nodes and dense compute rank nodes.
● Also allows “nice” decomposition of compute nodes to continue

Example: 12x72x2 Compute Ranks +
 6x2 IOS Ranks

Thread 0

Thread 1

Numa Node

Thread 0

Thread 1

Numa Node

16 GB per Rank

aprun –n 288 –N 12 –d 2 –j1 $EXE : -n 2 –N 2 –d 2 –S 1 –j1 $EXE :

 –n 288 –N 12 –d 2 –j1 $EXE : -n 2 –N 2 –d 2 –S 1 –j1 $EXE :

 –n 288 –N 12 –d 2 –j1 $EXE : -n 2 –N 2 –d 2 –S 1 –j1 $EXE

7
2
 C

o
m

p
u

te
 N

o
d

e
s

 3
 I
O

S
 N

o
d

e
s

1.3 GB per Rank

NUMA Node reordering

Reordering ranks within a node

2

9

● Short-Wave radiation
models are one of the
more expensive sub-
models

● However, only half the

earth is lit at anyone
time. This typically
translates to only half
the processors “active”
during these phases

● With default SMP
placement this means
potential memory
bandwidth imbalance
across sockets

3

0

Socket Imbalance 1

0 1 2 3

4 5 6 7

Socket 0

8 9 10 11

12 13 14 15

Socket 1

0 8 1 9

2 10 3 11

Socket 0

4 12 5 13

6 14 7 15

Socket 1

7 Active

Ranks

1 Active

Rank

4 Active

Ranks
4 Active

Ranks

Default SMP Placement

Load Balanced Placement

3

1

Socket Imbalance 2

0 1 2 3

4 5 6 7

Socket 0

8 9 10 11

12 13 14 15

Socket 1

0 8 1 9

2 10 3 11

Socket 0

4 12 5 13

6 14 7 15

Socket 1

4 Active

Ranks

4 Active

Rank

4 Active

Ranks
4 Active

Ranks

Default SMP Placement

Load Balanced Placement

3

2

Socket Imbalance 3

0 1 2 3

4 5 6 7

Socket 0

8 9 10 11

12 13 14 15

Socket 1

0 8 1 9

2 10 3 11

Socket 0

4 12 5 13

6 14 7 15

Socket 1

2 Active

Ranks

6 Active

Rank

4 Active

Ranks
4 Active

Ranks

Default SMP Placement

Load Balanced Placement

Hybrid MPI + OpenMP?

● OpenMP may help
● Able to spread workload with less overhead

● Large amount of work to go from all-MPI to (better performing) hybrid -
must accept challenge to hybridize large amount of code

● When does it pay to add OpenMP to my MPI code?
● Add OpenMP when code is network bound

● Adding OpenMP to memory bound codes may aggravate memory
bandwidth issues, but you have more control when optimizing for
cache

● Look at collective time, excluding sync time: this goes up as network
becomes a problem

● Look at point-to-point wait times: if these go up, network may be a
problem

● If an all-to-all communication pattern becomes a bottleneck,
hybridization often overcomes this

● Hybridization can be used to avoid replicated data

OpenMP thread placement

● When running a hybrid MPI+OpenMP application, the
optimal number of threads/MPI task depends on the
application and even input
● On the XC, one should try at least with 32x1, 16x2, perhaps also with

8x4, even 4x8 (MPI tasks x OpenMP threads per node)

● The XE system is able to place OpenMP threads
appropriately when the code is compiled with the Cray,
PGI or GNU compiler
● Just do e.g. ”aprun -n 64 -d 32 -N 1 ./a.out” (for a 64x32=2048 core

job)

● You can use the aprun switch -S to force a certain number of MPI
tasks per a numa node (=CPU) and -ss to have the threads to allocate
memory only in the local numa node

Summary

● Load imbalance is very often the very reason for non-
scalability of an application

● It can be due to imbalanced computation or
communication, with the usual suspects being
● Bad decomposition

● All-to-one communication patterns

● Single-writer I/O

● Usually needs fixing at the source code level

● Some things for non-severe load imbalances can be done
on the environment level: try to adjust the rank placement

● Hybrid MPI+OpenMP approach often useful for
overcoming load balance problems
● Mind the thread placement when using hybrid codes!

