
Understanding MPI on Cray XC30

MPICH3 and Cray MPT

● Cray MPI uses MPICH3 distribution from Argonne
● Provides a good, robust and feature rich MPI

● Cray provides enhancements on top of this:
● low level communication libraries

● Point to point tuning

● Collective tuning

● Shared memory device is built on top of Cray XPMEM

● Many layers are straight from MPICH3
● Error messages can be from MPICH3 or Cray Libraries.

Rank A

Overlapping Communication and Computation

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data

Transferred

in

Background

The MPI API provides many

functions that allow point-to-

point messages (and with MPI-

3, collectives) to be performed

asynchronously.

Ideally applications would be

able to overlap communication

and computation, hiding all data

transfer behind useful

computation.

Unfortunately this is not

always possible at the

application and not always

possible at the

implementation level.

What prevents Overlap?

● Even though the library has asynchronous API calls,
overlap of computation and communication is not always
possible

● This is usually because the sending process does not
know where to put messages on the destination as this is
part of the MPI_Recv, not MPI_Send.

● Also on Gemini and Aries, complex tasks like matching
message tags with the sender and receiver are performed
by the host CPU. This means:
+ Gemini and Aries chips can have higher clock speed and so lower
latency and better bandwidth

+ Message matching is always performed by a one fast CPU per rank.

- Messages can usually only be “progressed” when the program is inside
an MPI function or subroutine.

Receiver Sender

EAGER Messaging – Buffering Small Messages

MPI_Send

Compute

Compute

MPI_Recv

Compute

MPI

Buffers

T
im

e

Smaller messages can

avoid this problem using the

eager protocol.

If the sender does not know

where to put a message it

can be buffered until the

sender is ready to take it.

When MPI Recv is called

the library fetches the

message data from the

remote buffer and into the

appropriate location (or

potentially local buffer)

Sender can proceed as

soon as data has been

copied to the buffer.

Sender will block if there are

no free buffers

Data

pushed to

receiver’s

buffer

MPI

Buffers

Rank A

EAGER potentially allows overlapping

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data is pushed into an empty

buffer(s) on the remote

processor.

Data is copied from the buffer

into the real receive destination

when the wait or waitall is

called.

Involves an extra memcopy, but

much greater opportunity for

overlap of computation and

communication.

Receiver Sender

RENDEZVOUS Messaging – Larger Messages

MPI_Send

Compute

Compute

MPI_Recv

Compute

DATA
MPI

Buffers

T
im

e

Larger messages (that

are too big to fit in the

buffers) are sent via the

rendezvous protocol

Messages cannot begin

transfer until MPI_Recv

called by the receiver.

Data is pulled from the

sender by the receiver.

Sender must wait for data

to be copied to reciever

before continuing.

Sender and Receiver

block until communication

is finished

DATA

DATA

Data pulled

from the

sender

Rank A

RENDEZVOUS does not usually overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

With rendezvous data transfer

is often only occurs during the

Wait or Waitall statement.

When the message arrives at

the destination, the host CPU is

busy doing computation, so is

unable to do any message

matching.

Control only returns to the

library when MPI_Waitall occurs

and does not return until all

data is transferred.

There has been no overlap of

computation and

communication.

DATA DATA

DATA DATA

Making more messages EAGER

● One way to improve performance is to send more
messages using the eager protocol.

● This can be done by raising the value of the eager
threshold, by setting environment variable:
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

● Values are in bytes, the default is 8192 bytes. Maximum
size is 131072 bytes (128KB).

● Try to post MPI_IRecv calls before the MPI_ISend call to
avoid unecessary buffer copies.

Consequences of more EAGER messages

● Sending more messages via EAGER places more
demands on buffers on receiver.

● If the buffers are full, transfer will wait until space is
available or until the Wait.

● Buffer size can be increased using:
export MPICH_GNI_NUM_BUFS=X

● Buffers are 32KB each and default number is 64 (total of
2MB).

● Buffer memory space is competing with application
memory, so we recommend only moderate increases.

T
h
re

a
d
 B

T
h
re

a
d
 A

Rank A

Progress threads help overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_IRecv

Cray’s MPT library can spawn

additional threads that allow

progress of messages while

computation occurs in the

background.

Thread performs message

matching and intiatiates the

transfer.

Data has already arrived by the

time Waitall is called, so overlap

between compute and

communication.

DATA DATA

Compute

DATA

MPI_Waitall

Compute

DATA

● Used to improve communication/computation overlap

● Each MPI rank starts a “helper thread” during MPI_Init

● Helper threads progress MPI engine while application
computes

● Only inter-node messages that use Rendezvous Path are
progressed (relies on BTE for data motion)

● To enable on XC when using 1 stream per core:
● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

● export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled

● Run application: aprun –n XX a.out

● To enable on XC when using 2 streams per core recommend
running with the corespec option:

● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

● Run application with corespec: aprun –n XX -r [1-2] a.out

● 10% or more performance improvements with some apps

MPI - Async Progress Engine Support

Other Techniques - Collectives

● MPICH_COLL_OPT_OFF=<collective name> switches off
the Cray optimized algorithm for a given collective and
uses the original MPICH algorithm
● E.g. MPICH_COLL_OPT_OFF=mpi_allgather

● The algorithm selection for all-to-all routines (allgather(v),
alltoall(v)) is based on the number of ranks on the calling
communicator and the message sizes.

● This can be adjusted with MPICH_XXXX_VSHORT_MSG
environment variable, where XXXX=collective, e.g.
ALLGATHER.

Why use Huge Pages

● The Aries performs better with HUGE pages than with 4K
pages. The Aries can map more pages using fewer
resources meaning communications may be faster.

● Huge Pages will also affect TLB performance:
● Your code may run with fewer TLB misses (hence faster)

● However, your code may load extra data and so run slower

● Only way to know is by experimentation.

● Use modules to change default page sizes (man
intro_hugepages):
● e.g. module load craype-hugepages#

● craype-hugepages128K
● craype-hugepages512K

● craype-hugepages2M

● craype-hugepages8M

● craype-hugepages16M

● craype-hugepages64M

Most commonly successfully on

Cray XC

 MPICH_GNI_DYNAMIC_CONN

● Enabled by default

● Normally want to leave enabled so mailbox resources
(memory, NIC resources) are allocated only when the
application needs them

● If application does all-to-all or many-to-one/few, may as
well disable dynamic connections. This will result in
significant startup/shutdown costs though.

● Syntax for disabling:

export MPICH_GNI_DYNAMIC_CONN=disabled

More detail.

● In reality, there are two different Eager and Rendezvous
protocols in use with Cray’s MPI.

● The following slides show more detail on the
implementation and possible techniques for tuning them.

Day in the Life of an MPI Message
● Four Main Pathways through the MPICH2 GNI NetMod

● Two EAGER paths (E0 and E1)
● For a message that can fit in a GNI SMSG mailbox (E0)

● For a message that can’t fit into a mailbox but is less than
MPICH_GNI_MAX_EAGER_MSG_SIZE in length (E1)

● Two RENDEZVOUS (aka LMT) paths : R0 (RDMA get) and R1 (RDMA
put)

● Selected Pathway is based on Message Size

0 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB

E0 E1 R0 R1

MPICH_GNI_MAX_VSHORT_MSG_SIZE

MPICH_GNI_MAX_EAGER_MSG_SIZE

MPICH_GNI_NDREG_MAXSIZE

Day in the Life of Message type E0

● GNI SMSG Mailbox size changes with number of ranks in job
● If user data is 16 bytes or less, it is copied into the MPI header

Sender Receiver

1. GNI SMSG Send (MPI header + user data)

SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

EAGER messages that fit in the GNI SMSG Mailbox

2. Memcpy

Day in the Life of Message type E1

● User data is copied into internal MPI buffers
on both send and receive side

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

EAGER messages that don’t fit in the GNI SMSG Mailbox

5. Memcpy

2. GNI SMSG Send (MPI header)

4. GNI SMSG Send (Recv done)

1. Memcpy data to pre-allocated MPI buffers

MPICH_GNI_NUM_BUFS

default 64 buffers, each 32K

MPICH_GNI_NUM_BUFS

EAGER Message Protocol

Default mailbox size varies with number of ranks in the job

● Protocol for messages that can fit into a GNI SMSG
mailbox

● The default varies with job size, although this can be tuned
by the user to some extent

 Ranks in Job Max user data (MPT 5.3) MPT 5.4 and later

 < = 512 ranks 984 bytes 8152 bytes

 > 512 and <= 1024 984 bytes 2008 bytes

 > 1024 and < 16384 472 bytes 472 bytes

 > 16384 ranks 216 bytes 216 bytes

MPI env variables affecting the pathway

● MPICH_GNI_MAX_VSHORT_MSG_SIZE
● Controls max size for E0 Path

Default varies with job size: 216-984 bytes

● MPICH_GNI_MAX_EAGER_MSG_SIZE
● Controls max message size for E1 Path (Default is 8K bytes)

● MPICH_GNI_NDREG_MAXSIZE
● Controls max message size for R0 Path (Default is 4MB bytes)

● MPICH_GNI_LMT_PATH=disabled
● Can be used to Disable the entire Rendezvous (LMT) Path

Day in the Life of Message type R0

● No extra data copies
● Best chance of overlapping communication with computation

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

Rendezvous messages using RDMA Get

2. GNI SMSG Send (MPI header)

5. GNI SMSG Send (Recv done)

1. Register App Send Buffer

3. Register App Recv Buffer

Day in the Life of Message type R1

● Repeat steps 2-6 until all sender data is transferred

● Chunksize is MPI_GNI_MAX_NDREG_SIZE (default of 4MB)

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

Rendezvous messages using RDMA Put

1. GNI SMSG Send (MPI header)

5. RDMA PUT

6. GNI SMSG Send (Send done)

4. Register Chunk of App

 Send Buffer

2. Register Chunk of App

 Recv Buffer

3. GNI SMSG Send (CTS msg)

MPICH_GNI_MAX_VSHORT_MSG_SIZE

● Can be used to control the maximum size message that
can go through the private SMSG mailbox protocol (E0
eager path).

● Default varies with job size

● Maximum size is 8192 bytes. Minimum is 80 bytes.

● If you are trying to demonstrate an MPI_Alltoall at very
high count, with smallest possible memory usage, may be
good to set this as low as possible.

● If you know your app has a scalable communication
pattern, and the performance drops at one of the edges
shown on table on slide 18, you may want to set this
environment variable.

● Pre-posting receives for this protocol avoids a potential
extra memcpy at the receiver.

MPICH_GNI_MAX_EAGER_MSG_SIZE

● Default is 8192 bytes

● Maximum size message that go through the eager (E1)
protocol

● May help for apps that are sending medium size
messages, and do better when loosely coupled. Does
application have a large amount of time in MPI_Waitall?
Setting this environment variable higher may help.

● Maximum allowable setting is 131072 bytes

● Pre-posting receives can avoid potential double memcpy
at the receiver.

● Note that a 40-byte Nemesis header is included in account
for the message size.

 MPICH_GNI_MBOX_PLACEMENT

● Provides a means for controlling which memories on a
node are used for some SMSG mailboxes (private).

● Default is to place the mailboxes on the memory where the
process is running when the memory for the mailboxes is
faulted in.

● For optimal MPI message rates, better to place mailboxes
on memory of die0 (where Aries is attached).

● Only applies to first 4096 mailboxes of each rank on the
node.

● Syntax for enabling placement of mailboxes near the
Aries:
export MPICH_GNI_MBOX_PLACEMENT=nic

 MPICH_GNI_RDMA_THRESHOLD

● Default is now 1024 bytes

● Controls the threshold at which the GNI netmod switches
from using FMA for RDMA read/write operations to using
the BTE.

● Since BTE is managed in the kernel, BTE initiated RDMA
requests can progress even if the applications isn’t in MPI.

● Owing to Opteron/HT quirks, the BTE is often better for
moving data to/from memories that are farther from the
Aries.

● But using the BTE may lead to more interrupts being
generated

 MPICH_GNI_NDREG_LAZYMEM

● Default is enabled. To disable
export MPICH_GNI_NDREG_LAZYMEM=disabled

● Controls whether or not to use a lazy memory
deregistration policy inside UDREG. Memory registration
is expensive so this is usually a good idea.

● Only important for those applications using the LMT (large
message transfer) path, i.e. messages greater than
MPICH_GNI_MAX_EAGER_MSG_SIZE.

● Disabling results in a significant drop in measured
bandwidth for large transfers ~40-50 %.

● If code only works with this feature being diabled => BUG

 MPICH_GNI_DMAPP_INTEROP

● Only relevant for mixed MPI/SHMEM/UPC/CAF codes

● Normally want to leave enabled so MPICH2 and DMAPP
can share the same memory registration cache,

● May have to disable for SHMEM codes that call
shmem_init after MPI_Init.

● May want to disable if trying to add SHMEM/CAF to an MPI
code and notice a big performance drop.

● Syntax:

export MPICH_GNI_DMAPP_INTEROP=disabled

MPICH_GNI_DMAPP_INTEROP

● May have to set to disable if one gets a traceback like this:

Rank 834 Fatal error in MPI_Alltoall: Other MPI error, error stack:

MPI_Alltoall(768).......................: MPI_Alltoall(sbuf=0x2aab9c301010,

scount=2596, MPI_DOUBLE, rbuf=0x2aab7ae01010, rcount=2596,

MPI_DOUBLE,

comm=0x84000004) failed

MPIR_Alltoall(469)......................:

MPIC_Isend(453).........................:

MPID_nem_lmt_RndvSend(102)..............:

MPID_nem_gni_lmt_initiate_lmt(580)......: failure occurred while attempting to

send RTS packet

MPID_nem_gni_iStartContigMsg(869).......:

MPID_nem_gni_iSendContig_start(763).....:

MPID_nem_gni_send_conn_req(626).........:

MPID_nem_gni_progress_send_conn_req(193):

MPID_nem_gni_smsg_mbox_alloc(357).......:

MPID_nem_gni_smsg_mbox_block_alloc(268).: GNI_MemRegister

GNI_RC_ERROR_RESOURCE)

 MPICH_GNI_NUM_BUFS

● Default is 64 32K buffers (2M total)

● Controls the number of 32KB DMA buffers available for
each rank to use in the GET-based Eager protocol (E1).

● May help to modestly increase. But other resources
constrain the usability of a large number of buffers, so
don’t go berserk with this one.

● Syntax:

export MPICH_GNI_NUM_BUFS=X

