Short Introduction
to tools on the Cray XC system

Making it easier to port and optimise apps on the
0 Fg:ray XCBd3 op

© Cray Inc 2013

The Porting/Optimisation Cycle

Analysis Toolkit
(CrayPAT)

Abnormal Termination Processing
(ATP)

For when things break unexpectedly...
(Collecting back-trace information)

e
ANy |
o

°)
\

Debugging in production and scale

e Even with the most rigorous testing, bugs may occur \
during development or production runs.
e It can be very difficult to recreate a crash without additional information
e Even worse, for production codes need to be efficient so usually have
debugging disabled
e The failing application may have been using tens of or

hundreds of thousands of processes

e If a crash occurs one, many, or all of the processes might issue a
signal.

e \We don’t want the core files from every crashed process, they're slow
and too big!

e \We don’t want a backtrace from every processes, they're difficult to
comprehend and analyze.

® e
o

°)
\

ATP Description

e Abnormal Termination Processing is a lightweight
monitoring framework that detects crashes and provides
more analysis

e Designed to be so light weight it can be used all the time with almost
no impact on performance.

e Almost completely transparent to the user

e Requires atp module loaded during compilation (usually included by
default)

e Output controlled by the ATP_ENABLED environment variable (set by
system).

e Tested at scale (tens of thousands of processors)

e ATP rationalizes parallel debug information into three
easier to user forms:
1. Asingle stack trace of the first failing process to stderr
2. Avisualization of every processes stack trace when it crashed
3. Aselection of representative core files for analysis

ATP — Abnormal Termination Processing

-

T Normal

o
Termination - P
) are

A
Termination _
e

A\

N STATview -

\%

— STATview

Termination

Abnormal

©

ATP Components

e Application process signal handler \
o triggers analysis
o controls its own core_pattern
e Back-end monitor
o collects backtraces via StackwalkerAPI
o forces core dumps as directed
e Front-end controller
o coordinates analysis via MRNet
o Selects process set that is to dump core

e Once initial set up complete, all components comatose

ATP Communications Tree

Front-end

Usage \

Compilation — environment must have module loaded

module load atp

Execution (scripts must explicitly set these if not included
by default)

ATP respects ulimits on corefiles. So to see
corefiles the ulimit must change.

export ATP_ENABLED=1 On crash ATP will produce a selection of
ulimit -c unlimited relevant cores files with unique, informative
names.

More information (while atp module loaded)

man atp

\

Viewing the results - stderr

Application 867282 is crashing. ATP analysi

Stack walkback for Rank 16 _starting:
[empty J@OXF I fEEFTTIFIF
funcA@crash.c:8
Stack walkback for Rank 16 done
Process died with signal 11: 'Segmentation fault'
Forcing core dumps of ranks 16, ©
View application merged backtrace thkee with: statview atpMergedBT.dot
You may need to: module load stat

_pmiu_daemon(SIGCHLD): [NID 0@752] [c3-8t2s
PE RANK © exit signal Segmentation fault

[NID ©806752] 2013-82-12 19:08:18 Apid 867282

ion

_pmiu_daemon(SIGCHLD): [NID @0753] [c3-0c2s12n1] [Tue Feb 12 19:08:18 2013]
PE RANK 16 exit signal Segmentation fault

Application 867282 exit codes: 139

Application 867282 resources: utime ~2s, stime ~2s
slurm-10340.o0ut lines 1-16/16 (END

Example output in stderr.

Viewing the results — merged backtrace

module load stat
statview atpMergedBT.dot

File Edit View Help

B 9 @2 0o ¥le A

atpMergedBT.dot |

-Command History

32:0-31] R:[0,16] ~~32:[0-31]

r—"

2:[0-31] D:[0,16] Ez:[o-m]

nch ScsEav)

D:[0,16]

GNI_WaitEmorEvents

D:[0,16]

e

Stack Trace Analysis Tool (STAT)

For when nothing appears to be
happening...

STAT \

e Stack Trace Analysis Tool (STAT) is a cross-platform tool
from the University of Wisconsin-Madison.

e ATP is based on the same technology as STAT. Both
gather and merge stack traces from a running
application’s parallel processes.

e It is very useful when application seems to start

be stuck/hung l
__libc_start main

e Full information including use cases Is miin
avallable at |
http://www.paradyn.org/STAT/STAT.ntml func1

e Scales to many thousands of concurrent l
process, only limited by number file f“rl“’z

descriptors e
e STAT 1.2.1.3 is the default version on Sisu. |

func4

®e
CRANyY
i

°)
\

Stack Trace Analysis Tool (STAT)

e Stack trace sampling and analysis for large scale
applications
e Reduce number of tasks to debug
e Discover equivalent process behavior

e Extreme scaling

e Jaguar — 216K processes
e BG/L — 208K processes

Merging Stack Traces

e Multiple traces over space or time

e Create call graph prefix tree
e Compressed representation

e Scalable visualization

e Scalable analysis

Stack Trace Merge Example

cRay

2D-Trace/Space Analysis

Appl

L1 1 1

10798{0,3-10799]

10798{0,3-10799]

10798:[0,3-10799] \18[133,496,502,..]

107980,3-10799] 1 {1]

MP1_Waitall

112]
|

MPIDI_CRAY_Progress_walit

112]
MPIDI_CRAY _progress

f 12]

MPIDI_CRAY_ptldev_progress

Merged Stack for Cray XT \

A iy ooy - z Sttt
o i i i S
S T
i i i i S
i i i o i

File Edit View y
o A A o e Longest_ Shories sngle Ea !
oy - G
libc start main
—_— — e —

216000:[0-215999]

main

215998:[0,3-215999] [1:[1] 1:[2]

MPI_Waita

MPIDI_CRAY_ptldev_progress

215998:[0,3-215999]\ 175:[1400,1733,... 1:[2]

Using STAT

Start an interactive job...

module load stat

<launch job script> &

Wait until application hangs:
STAT <pid of aprun>

Kill job

statview STAT results/<exe>/<exe>.0000.dot

LGDB

Diving in through the command line...

lgdb - Command line debugging

e LGDB is aline mode parallel debugger for Cray systems i
e Available through cray-1gdb module

e Binaries should be compiled with debugging enabled, e.g. —g. (Or Fast-Track
Debugging see later).

e The recent 2.0 update has introduced new features. All previous syntax is deprecated

e It has many of the features of the standard GDB debugger, but includes
extensions for handling parallel processes.

It can launch jobs, or attach to existing jobs

1. To launch a new version of <exe>
1. Launch an interactive session
2. Run 1gdb
3. Run launch $pset{nprocs} <exe>
2. To attach to an existing job
1. find the <apid> using apstat.
2. launch 1gdb
3. run attach $<pset> <apid> from the 1gdb shell.

LGDB process groups \

Debugging commands are issued in parallel to all processes
in the “focus” group. By default this is $<pset>, all the

processors in the application.

Output from commands is grouped into common sets, e.g.
backtraces (bt) will be prepended with groups, e.g.

bt
all[o..15]: #0 ©0x00000VR4009ct in main at /tdsnfsl/y02/y02/ted/xthi.c:55

Or

bt
all[o0,2..31]: #0 0©Ox0000000000400979 in main at /tdsnfsl/y02/y02/ted/xthi.c:47
all[1]: #0 ©0x00000000RV400984 in main at /tdsnfsl/y02/y02/ted/xthi.c:48

LGDB process groups \

New groups can be created
defset $<newgrp> $<pset>{rankl}, $<pset>{rank37}
Changing focus can be changed with

focus $<newgrp>

Changing focus can be changed with

focus $<newgrp>

Fast Track Debugging

For getting to the problem more quickly...

The Problem ‘

e Debug compilations eliminate optimizations
e Today's machines really need optimizations
e Slows down execution
e Problem might disappear

e Compile such that both debug and non-debug (optimized)
versions of each routine are created.

e Use —Gfast instead of —g with the Cray compiler.
e Linkage such that optimized versions are used by default

e Debugger overrides default linkage when setting
breakpoints and stepping into functions

e Supported by DDT

A Closer Look at How FTD Works

call difuze(...)

call interf(...)

source code

C=RANY
U

optimized binary code

h

call difuze(...) /

\
\

/T difuze()
/

Al

y

call interf(...)

dbg$difuze()

\

/

subrountine difuze(...)

debug co

call difuze(...)

subrountine interf(...)

\—

call interf(...)

Breakpoint requested in i

placed in interf_debug()

interf()

.
/4

=P dbg$interf()

=T

Jmp inserted as part of breakpoint planting

@)

Tera TF Execution Time

800

700

600

500

400

300

200

100

-03

—Gfast is 320% faster than —g

-Gfast

Cost of Fast Track Debugging

e Compiles are slower
e Executable uses more disk space
e Inlining turned off

e 1.7% average slow down of all SPEC2007MPI tests
e Range of slight speedup to 19.5% slow down

e Uses more memory

e 4% larger at start up
e 0.0001% larger after computation

