
Introduction to performance analysis

© Cray Inc 2013

Performance Analysis – Motivation (1)

Cray Inc.
2

Even the most reasonably priced supercomputer costs
money to buy and needs power to run (money)

Performance Analysis – Motivation (2)

Cray Inc.
3

We want to get the most
science and engineering
through the system as
possible.

The more efficient codes are
the more productive scientists
and engineers can be.

/
pi
1 9

e

3
9

CO2

Performance Analysis – Motivation (3)

Cray Inc.
4

To optimise code we must know what is taking the time

Application Inputs Output

Profile Data

Sampling and Event Tracing

.
5

● When we instrument a binary, we have to choose when we
will collect performance information:

1. Sampling
● By taking regular snapshots of the applications call stack we can

create a statistical profile of where the spends most time.
● Snapshots can be taken at regular intervals in time or when some

other external even occurs, like a hardware counter overflowing

2. Event Tracing
● Alternatively we can record performance information every time a

specific program event occurs, e.g. entering or exiting a function.
● We can get accurate information about specific areas of the code

every time the event occurs
● Event tracing code can be added automatically or included manually

through API calls.

● pat_build options define how binaries are instrumented,
for sampling or event tracing

6

Sampling

Advantages

• Only need to instrument

main routine

• Low Overhead – depends

only on sampling frequency

• Smaller volumes of data

produced

Disadvantages

• Only statistical averages

available

• Limited information from

performance counters

Event Tracing

Advantages

• More accurate and more detailed

information

• Data collected from every traced

function call not statistical averages

Disadvantages

• Increased overheads as number of

function calls increases

• Huge volumes of data generated

The best approach is guided tracing.

e.g. Only tracing functions that are not small (i.e. very few

lines of code) and contribute a lot to application’s run time.

APA is an automated way to do this.

CrayPAT’s Design Goals

.
7

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Lightweight and automatic program instrumentation

● Automatic Profiling Analysis mode to bootstrap the process

● Target scalability issues in all areas of tool development
● Work on user codes at realistic core counts with thousands of

processes/threads

● Integrate into large codes with millions of lines of code

● Be a universal tool
● Basic functionality available to all compilers on the system

● Additional functionality available from the Cray compiler

CrayPAT-lite Overview

● CrayPAT is a very flexible and powerful suite of tools

● The simplest and quickest way is CrayPAT-lite

● It is a “bootstrap”, one-step mode to collect profiling data.

● Features include:
● Profiling with a single module load (module load perftools-lite)

● A simplified interface to basic application profiling and performance
information to users unfamiliar with Cray Performance Tools.

● Automatic profile statistics at the end of the job run.

● Requires no further user intervention in build and run process.

Steps to Using CrayPat-lite

Access light version of performance tools software

Build program

Run program (no modification to batch script)

a.out (instrumented program)

Condensed report to stdout
a.out*.rpt (same as stdout)

a.out*.ap2
MPICH_RANK_XXX files

> make

aprun a.out

> module load perftools-lite

Default Output – Job Summary Info

CrayPat-lite Performance Statistics #

CrayPat/X: Version 6.1.2 Revision 11819 (xf 11595) 09/09/13 17:13:04

Experiment: lite sample_profile

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 8
Execution start time: Fri Sep 13 12:40:39 2013

System name and speed: tiger 2701 MHz

Default Output – Condensed Profile

Table 1: Profile by Function Group and Function (top 10 functions shown)

 Samp% | Samp | Imb. | Imb. |Group

 | | Samp | Samp% | Function

 | | | | PE=HIDE

 100.0% | 530.1 | -- | -- |Total

|---

| 69.6% | 368.8 | -- | -- |USER

||--

|| 25.6% | 135.8 | 18.2 | 12.6% |remap_

|| 16.7% | 88.6 | 42.4 | 34.6% |riemann_

|| 12.6% | 66.6 | 14.4 | 19.0% |ppmlr_

|| 3.1% | 16.2 | 6.8 | 31.6% |states_

|| 2.8% | 15.0 | 4.0 | 22.5% |evolve_

|| 2.4% | 12.6 | 4.4 | 27.5% |sweepz_

||==

| 22.5% | 119.1 | -- | -- |MPI

||--

|| 18.8% | 99.6 | 23.4 | 20.3% |mpi_alltoall

|| 3.4% | 18.2 | 4.8 | 22.3% |MPI_ALLREDUCE

||==

| 8.0% | 42.2 | -- | -- |ETC

||--

...

Default Output - Observations

================ Observations and suggestions ========================

MPI utilization:

 The time spent processing MPI communications is relatively high.

 Functions and callsites responsible for consuming the most time can

 be found in the table generated by pat_report -O callers+src (within

 the MPI group).

================ End Observations ====================================

Default Output – File Output Stats

Cray Inc.
13

Table 3: File Output Stats by Filename (top 10 files shown)

 Write | Write | Write Rate | Writes | Bytes/ |File Name[max10]

 Time | MBytes | MBytes/sec | | Call | PE=HIDE

 0.856587 | 327.326918 | 382.129057 | 219.0 | 1567247.26 |Total

|---

| 0.112991 | 11.539566 | 102.128566 | 6.0 | 2016685.33 |output/NCState_1001.0001.nc

| 0.098533 | 11.539566 | 117.113289 | 6.0 | 2016685.33 |output/NCState_1000.0003.nc

| 0.094149 | 11.539566 | 122.566434 | 6.0 | 2016685.33 |output/NCState_1000.0002.nc

| 0.051630 | 11.539566 | 223.503604 | 6.0 | 2016685.33 |output/NCState_1003.0002.nc

| 0.049669 | 11.539566 | 232.330699 | 6.0 | 2016685.33 |output/NCState_1005.0001.nc

| 0.045943 | 11.539566 | 251.172497 | 6.0 | 2016685.33 |output/NCState_1004.0000.nc

| 0.030444 | 11.539566 | 379.039470 | 6.0 | 2016685.33 |output/NCState_1006.0003.nc

| 0.020904 | 11.539566 | 552.034058 | 6.0 | 2016685.33 |output/NCState_1002.0002.nc

| 0.020195 | 11.539566 | 571.418041 | 6.0 | 2016685.33 |output/NCState_1004.0002.nc

| 0.019499 | 11.539566 | 591.791325 | 6.0 | 2016685.33 |output/NCState_1002.0001.nc

|===

Default Output – Further Analysis Suggestions

Program invocation: ./vhone

For a complete report with expanded tables and notes, run:

 pat_report /lus/scratch/tedwards/vh1/VH1/vhone+4175355-9s.ap2

For help identifying callers of particular functions:

 pat_report -O callers+src /lus/scratch/tedwards/vh1/VH1/vhone+4175355-9s.ap2

To see the entire call tree:

 pat_report -O calltree+src /lus/scratch/tedwards/vh1/VH1/vhone+4175355-9s.ap2

For interactive, graphical performance analysis, run:

 app2 /lus/scratch/tedwards/vh1/VH1/vhone+4175355-9s.ap2

Predefined Set of Performance Experiments

Provides a set of three predefined experiments, selected
with the CRAYPAT_LITE environment variable during build.

● export CRAYPAT_LITE=“sample_profile”

● Provides profile information based on sampling

● Provides hardware counter information for “main” and children

● export CRAYPAT_LITE=“event_profile”
● Provides profile information based on limited tracing

● Includes MPI, OpenMP and OpenACC information (as relevant)

● Traces functions under 1200 bytes (more coarse grained than APA)

● export CRAYPAT_LITE=“GPU”

● User can always extract more information than original
report from generated .ap2 file using pat_report and
Apprentice2

Cray Performance Analysis Toolkit

A Guide to the Individual Components

Cray Inc.
16

The Three Stages of CrayPAT

.
17

● There are three fundamental stages with accompanying
tools

1. Instrumentation

● Use pat_build to apply instrumentation to program binaries

2. Data Collection

● Transparent collection via CrayPAT’s run-time library

3. Analysis

● Interpreting and visualizing collected data using a series of post-mortem
tools:

1. pat_report: a command line tool for generating text reports

2. Cray Apprentice2: a graphical performance analysis tool

3. Reveal: Graphical performance analysis and code restructuring tool

● Documentation is provided via
● The pat_help system

● And the traditional man craypat

Instrumentation

.
18

 All instrumentation is done by pat_build, a stand-alone utility that
automatically instruments an existing application for performance
collection

● Requires no source code or makefile modification by default
● Automatic instrumentation at group (function) level

● Example groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation

● Requires object files to still exist, have been compiled with the
wrapper scripts while the perftools module was loaded

● Able to generates instrumentation on optimized code
● Creates a new stand-alone instrumented program
● Preserves original binary

● To use the tools perftools must be loaded during the compile ,
at linking and at instrumentation (but not runtime)
● module load perftools

Creating and running a sampling binary

Cray Inc.
19

● pat_build creates sampling binaries by default

● To build a binary with sampling instrumentation, run:

● pat_build <exe>

● This will create a new executable in the form.

● <exe>+pat

● Run this executable as normal in place of the original.

● Profiling data will be created in the form of

● *s*.xf files (s for sampling)

● Or a directory containing multiple *s*.xf files

Creating event tracing binaries

Cray Inc.

● Only true function calls can be traced
● Functions that are inlined by the compiler or that have local scope in a

compilation unit cannot be traced

● Enabled with pat_build –g, -u, -T, -t or –w options

● -w instructs pat_build to create trace points in the binary for user
functions (required if user functions need to be traced)

● -g enables tracing of system functions and system libraries, e.g. mpi,
blas, caf, upc, fftw

● -u creates instrumentation for ALL the user defined functions
● -T creates instrumentation for specific user function (may be defined

multiple times for different functions, or limited regular expressions)
● -t specifies a file containing a list of functions to create instrumentation

for.

● A new binary will be created which can be run in place of the
original.

● Data is output in *.t.xf file or files (t for tracing) in the run
directory

20

-g tracegroup (subset)

.
21

● blas Basic Linear Algebra subprograms
● CAF Co-Array Fortran (Cray CCE compiler only)
● HDF5 HDF5 I/O library
● heap dynamic heap
● io includes stdio and sysio groups
● lapack Linear Algebra Package
● math ANSI math
● mpi MPI
● omp OpenMP API
● omp-rtl OpenMP runtime library
● pthreads POSIX threads
● shmem SHMEM
● sysio I/O system calls
● system system calls
● upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

Using pat_report

.
22

● Always need to run pat_report at least once to perform
data conversion
● Combines information from xf output (optimized for writing to disk)

and binary with raw performance data to produce ap2 file (optimized
for visualization analysis)

● Instrumented binary must still exist when data is converted!

● Resulting ap2 file is the input for subsequent pat_report calls and
Apprentice2

● xf and instrumented binary files can be removed once ap2 file is
generated.

● Generates a text report of performance results
● Data laid out in tables

● Many options for sorting, slicing or dicing data in the tables.
● pat_report –O <table option> *.ap2
● pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

Why Should I generate an “.ap2” file?

.
23

● The “.ap2” file is a self contained compressed

performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application

binary

● Can be reused, even if the application binary is no longer available or

if it was rebuilt

● Is independent on the version used to generate the ap2 file

● The xf files are very version depending

● It is the only input format accepted by Cray Apprentice2

● => Delete the xf files after you have the ap2 file

Some important options to pat_report -O

Cray Inc.
24

callers Profile by Function and Callers

callers+hwpc Profile by Function and Callers

callers+src Profile by Function and Callers, with Line Numbers

callers+src+hwpc Profile by Function and Callers, with Line Numbers

calltree Function Calltree View

heap_hiwater Heap Stats during Main Program

hwpc Program HW Performance Counter Data

load_balance_program+hwpc Load Balance across PEs

load_balance_sm Load Balance with MPI Sent Message Stats

loop_times Loop Stats by Function (from -hprofile_generate)

loops Loop Stats by Inclusive Time (from -hprofile_generate)

mpi_callers MPI Message Stats by Caller

profile Profile by Function Group and Function

profile+src+hwpc Profile by Group, Function, and Line

samp_profile Profile by Function

samp_profile+hwpc Profile by Function

samp_profile+src Profile by Group, Function, and Line

For a full list see pat_report –O help

Automatic Profile Analysis

A two step process to create an guided
event trace binary.

Steps to Using CrayPat “APA”

Access performance tools software

Build program, retaining .o files

Instrument binary

Modify batch script and run program

Process raw performance data and create report

a.out

a.out+pat

a.out+pat*.xf

> make

a.out+pat*.ap2
Text report to stdout

a.out+pat*.apa
MPICH_RANK_XXX

> pat_build –O apa a.out

aprun a.out+pat

> pat_report a.out+pat*.xf

> module load perftools

Program Instrumentation - Automatic Profiling
Analysis

.
27

● Automatic profiling analysis (APA)

● Provides simple procedure to instrument and collect
performance data as a first step for novice and expert
users

● Identifies top time consuming routines

● Automatically creates instrumentation template
customized to application for future in-depth
measurement and analysis

Steps to Collecting Performance Data

.
28

● Access performance tools software

 % module load perftools

● Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

● Instrument application for automatic profiling analysis
● You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

● Run application to get top time consuming routines
● You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

We are telling pat_build that the

output of this sample run will be

used in an APA run

Steps to Collecting Performance Data (2)

.
29

● Generate text report and an .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |

<sdatadir>]

● Inspect .apa file and sampling report

● Verify if additional instrumentation is needed

Generating Event Traced Profile from APA

.
30

● Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

● Run application

% aprun … a.out+apa (or qsub <apa script>)

● Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

● View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Modifying CrayPAT’s collection
behaviour

Changing how and which data are collected
at runtime

Cray Inc.
31

Launching instrument variables

Cray Inc.
32

● Once a binary has been instrumented for either sampling
or tracing it should be run in place of the original binary.
● Always check that instrumenting the binary has not affected the run

time compared to the original binary

● Collecting event traces on large numbers of frequently called
functions, or setting the sampling interval very low can introduce a lot
of overhead.

● MUST run on Lustre
● Avoid running on the home directory, use a /wrk

● The runtime analysis can be modified through the use of
environment variables
● All runtime CrayPAT environment variables are of the form PAT_RT_*

Example Runtime Environment Variables

.
33

● Optional timeline view of program available
● export PAT_RT_SUMMARY=0
● View trace file with Cray Apprentice2

● Number of files used to store raw data:
● 1 file created for program with 1 – 256 processes

● √n files created for program with 257 – n processes

● Ability to customize with PAT_RT_EXPFILE_MAX

● Request hardware performance counter information:
● export PAT_RT_HWPC=<HWPC Group>
● Can specify events or predefined groups

API for controlling tracing

Cray Inc.

● #include <pat_api.h>
● int PAT_state (int state)

● State can have one of the following:
● PAT_STATE_ON
● PAT_STATE_OFF
● PAT_STATE_QUERY

● int PAT_record (int state)
● Controls the state for all threads on the executing PE. As a rule, use

PAT_record() unless there is a need for different behaviors for
sampling and tracing
● int PAT_sampling_state (int state)
● int PAT_tracing_state (int state)

● int PAT_trace_function (const void *addr, int
state)
● Activates or deactivates the tracing of the instrumented function

● int PAT_flush_buffer (void)

Fortran equivalents, like MPI, are subroutines with extra final
integer argument for return value

34

API for adding user instrumentation

Cray Inc.

● Users are able to define their own trace points via the
region API.

● #include <pat_api.h>
● int PAT_region_begin (int id, char *label)

● id is a unique identifier for the region,

● Label is the description that will appear in profiling output.

● int PAT_region_end (int id)
● id is a unique identifier for the region, must match begin call.

Fortran equivalents, like MPI, are subroutines with extra final
integer argument for return value

35

Trace On / Trace Off Example

 include "pat_apif.h“
 ! Turn data recording off at the beginning of execution.
 call PAT_record(PAT_STATE_OFF, istat)
 ...
 ! Turn data recording on for two regions of interest.
 call PAT_record(PAT_STATE_ON, istat)
 …
 call PAT_region_begin(1, "step 1", istat)
 ...
 call PAT_region_end(1, istat)
 …
 call PAT_region_begin(2, "step 2", istat)
 ...
 call PAT_region_end(2, istat)
 …
 ! Turn data recording off again.
 call PAT_record(PAT_STATE_OFF, istat)
 …

36

-DCRAYPAT defined by wrappers scripts

