
Overview of Compilers and

Libraries on XC30

© Cray Inc 2013

Cray Programming Environment Distribution
Focus on Performance and Productivity

2

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

3rd Party
Compilers

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.1

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

Modules

Debugging Support

Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

Using the Compiler Driver Commands

3

● You use compiler driver commands to launch all Cray XC

compilers

● The syntax for the compiler driver is:
● cc | CC | ftn [Cray_options | Intel_options | GNU_options] files

● For example, to use any Fortran compiler (CCE, Intel,

GNU) to compile prog1.f90

● Use this command:

● % ftn prog1.f90

● The compiler drivers are setup by the PrgEnv-??? Module

● PrgEnv-cray, PrgEnv-gnu, PrgEnv-intel

● Check that the craype-ivybridge module is loaded

● The drivers automatically support an MPI build

● No need to use specific wrappers such as mpiifort, mpicc

PLEASE NOTE : Cross Compiling Environment

4

● You are compiling on a Linux login node
but generating an executable for a CLE compute
node

● Do not use crayftn, craycc, ifort, icc, gcc, g++…
unless you want a Linux executable for the
service node
● ALWAYS Use ftn, cc, or CC instead

● Use the direct compiler commands if the executable is
supposed to run on the service nodes (utilities, setup, …)

About the -I, -L and -l flags

5

● The compiler driver commands add specific flags
depending on the loaded modules
● E.g. flags for debugging information when perftools

module is loaded

● The modules add library and include paths for
you, don’t do this yourself (for example in a
Makefile)
● No additional MPI flags are needed (included by

wrappers)
● You do not need to add any -I, -l or –L flags for the Cray

provided libraries
● If your Makefile needs an input for –L to work correctly, try

using ‘.’
● If you really, really need a specific path, try checking

‘module show X’ for some environment variables

● Use the -v/-V options or set the environment
variable CRAYPE_INFO_MESSAGE_ON to get details

Dynamic vs Static linking

6

● Currently static linking is default when using the compiler driver commands

● Independent of the PrgEnv loaded

● Will change in the future. Already changed when linking for GPUs (XK7 nodes)

● To specify how to link

● you can either set CRAY_LINK_TYPE to static or dynamic

● Or link with the -static or -dynamic options of the compiler driver commands

● Features of dynamic linking:

● smaller executable, automatic use of new libs

● Might need longer startup time to load and find the libs

● Environment (modules) should be the same between your compiler setup and your batch script (eg.

when switching to PrgEnv-intel)

● Features of static linking:

● Faster startup

● Larger executable (but who cares)

● If you want to hardcode the rpath into the executable use

● CRAY_ADD_RPATH=yes

● This will always load the same version of the lib when running, independent on version being

installed

The Cray Compilation Environment

(CCE)

© Cray Inc 2013

CCE Overview

8

● Cray technology focused on scientific applications

● Takes advantage of automatic vectorization

● Takes advantage of automatic shared memory parallelization

● Standard conforming languages and programming

models

● ANSI/ISO Fortran 2003 and Fortran 2008 standards compliant

● ANSI/ISO C99 and C++2003 compliant

● OpenMP 3.1 compliant, working on OpenMP 4.0

● OpenACC 1.0

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool

● Aggressive loop restructuring and scalar optimization done in the
presence of OpenMP

● Consistent interface for managing OpenMP and automatic
multithreading

CCE Overview (cont)

9

● Intel Sandy/Ivy Bridge support

● x86/NVIDIA compiler and library development

● Support for MPI 2.2

● PGAS languages (UPC & Fortran Coarrays) fully optimized and

integrated into the compiler

● UPC 1.2 and Fortran 2008 coarray support

● No preprocessor involved

● Target the network appropriately

● Support for hybrid programming using MPI across node and OpenMP

within the node

● Support for IEEE floating-point arithmetic and IEEE file formats

● Cray performance tools and debugger support

● Program Library

● CCE 8.1 was released on September, 2012
● The full release overview can be found at: http://docs.cray.com/books/S-5212-81/

http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/

CCE Compiler Testing

10

● Roughly 35,000 nightly regression tests run for Fortran (14,000), C

(7,000), and C++ (14,000)

● Default optimization, but for multiple targets (x86, x86+AVX+FMA, x86+NVIDIA),

plus “debug” and “production” compiler versions

● Additionally, cycle through “options testing” with the same test base

● Fortran: -G0, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, -O3,fp3 -e0

● C and C++: -Gn, -O0, -hipa0, -hipa5, -hpic, -O3 -hfp3 -hzero

● Additional tests and suites have been added for GPU testing

● And some “stress test” option sets to create worse-case scenarios for the compiler

● Other combinations as necessary and by request

● Performance regression testing done weekly using important

applications and benchmarks

● Functional and performance regressions typically use an automated

system that isolates the change to a specific compiler or library mod

● Issues that are found as a result of testing but not immediately

addressed have bugs opened to track them

General Cray Compiler Flags

11

● Optimisation Options
● -O2 optimal flags [enabled by default]

● -O3 aggressive optimization

● -O ipaN (ftn) or -hipaN (cc/CC) inlining, N=0-5 [default N=3]

● Create listing files with optimization info
● -ra (ftn) or -hlist=a (cc/CC) creates a listing file with all

 optimization info

● -rm (ftn) or -hlist=m (cc/CC) produces a source listing with
 loopmark information

● Parallelization Options
● -O omp (ftn) or -h omp (cc/CC) Recognize OpenMP directives

 [default]

● -O threadN (ftn) or control the compilation and
-h threadN (cc/CC) optimization of OpenMP directives,
 N=0-3 [default N=2]

 More info: man crayftn, man craycc, man crayCC

Inlining with CCE

12

● Inlining is enabled by default
● Command line option -OipaN (ftn) or -hipaN (cc/CC) where N=0…5,

provides a set of choices for inlining behavior

● 0 - All inlining and cloning are disabled. All inlining and cloning compiler
directives are ignored.

● 1 - Directive inlining. Inlining is attempted for call sites and routines that are
under the control of an inlining compiler directive. Cloning disabled and cloning
directives are ignored.

● 2 - Inlining. Inline a call site to an arbitrary depth as long as the expansion does
not exceed some compiler-determined threshold. Cloning disabled and cloning
directives are ignored.

● 3 (default) - Constant actual argument inlining and tiny routine inlining. This
includes levels 1 and 2, plus any call site that contains a constant actual
argument. Cloning disabled and cloning directives are ignored.

● 4 - Aggressive inlining. This includes levels 1, 2, and 3, plus a call site does not
have to reside in a loop body to inline. Cloning disabled and cloning directives
are ignored.

● 5 - Cloning. This includes levels 1, 2, 3, and 4, plus routine cloning is attempted
if inlining fails at a given call site. Cloning directives are enabled.

Inlining with CCE (cont)

13

● By default, all inlining candidates come from the current

source file

● The -Oipafrom= (ftn) or -hipafrom= (cc/CC) option

instructs the compiler to look for inlining candidates from

other source files, or a directory of source files

● “ftn -Oipafrom=b.f a.f” tells the compiler to look for inlining candidates

within b.f when compiling a.f

● “cc -hipafrom=./dir src.c” tells the compiler to look for inlining

candidates in all the valid source files that exist in the directory ./dir

when compiling src.c

● Cross language inlining is not supported

Whole-Program Compilation

14

● The Program Library (PL) feature allows the user to specify a

repository of compiler information for an application build

● This repository provides the framework for future productivity features such as

● Whole program static error detection

● Incremental recompilation

● Provide support for the future Cray interactive whole program performance analysis and

tuning assistant Reveal

● Two command line options control the Program Library functionality

● -h pl = <PL_path> specifies the repository

● -hpl=./PL.1 tells the compiler to either update the Program Library “./PL.1” if it exists, or

create it if it does not exist.

● <PL_path> should specify a single location to be used for entire application build. If a

makefile changes directories during a build, an absolute path might be necessary.

● -h wp enables whole-program mode

● Needed by Reveal (to be covered in the tool talk on Thursday)

Whole-Program Compilation (cont)

15

● Whole-program mode (-hwp) requires a program library (-hpl=) and
both options must be specified on all compilation command lines as
well as on the link line.
● The compiler frontend is invoked for the compilation (-c) command lines

● The compiler backend (inliner, optimizer, code generator) is invoked for all source
files when the link line is specified.

● While -hwp might have a negative affect on overall compile time due to increased
inlining, it is most usually a compile time shift, where -c compilations become quite
fast and the time spent on the link step increases.

● Setting the environment variable “NPROC” to a number greater than 1 instructs
the compiler to invoke NPROC backend processes concurrently. The backend
invocations are independent of each other and setting NPROC to a level that is
appropriate for the host build machine can improve compile time.

● Whole-program mode (-hwp) allows the inliner to see all inline
candidates in the application.
● This option makes cross file inlining automatic

● Removes the need for -O/-h ipafrom=

● Inlining heuristics are still controlled by -O/-h ipaN

Unrolling

16

● By default, the compiler attempts to unroll all loops,
unless the NOUNROLL directive is specified for a loop
● Generally, unrolling loops increases single processor performance at

the cost of increased compile time and code size

● -OunrollN (ftn) or -hunrollN (cc/CC) where N=0,1,2, globally
control loop unrolling and changes the assertiveness of
the UNROLL directive
● 0: No unrolling (ignore all UNROLL directives and do not attempt to

unroll other loops)

● 1: Attempt to unroll loops if there is proof that the loop will benefit

● 2: (Default) Attempt to unroll all loops (includes array syntax implied
loops), except those marked with the NOUNROLL directive.

Vectorization

17

● The -OvectorN (ftn) or -hvectorN (cc/CC) where N=0…3,
specify the level of automatic vectorizing to be performed.
Vectorization results in significant performance
improvements with a small increase in object code size.
Vectorization directives are unaffected by this option
● 0: No automatic vectorization

● 1: Specifies conservative vectorization. Loop nests are restructured.
No vectorizations that might create false exceptions are performed.
Results may differ slightly from results obtained when N=0 is specified
because of vector reductions

● 2: (Default) Specifies moderate vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured

● 3: Specifies aggressive vectorization. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may be
performed.

Floating-Point Optimizations

18

● The -hfpN option, where N=0…4, controls the level of
floating-point optimizations: N=0 gives the compiler
minimum freedom to optimize floating-point operations,
while N=4 gives it maximum freedom. The higher the level,
the less the floating-point operations conform to the IEEE
standard.
● N=0 and N=1: Use this option only when your code pushes the limits

of IEEE accuracy or requires strong IEEE standard conformance.
Executable code is slower than higher floating-point optimization
levels

● N=2: default value. It performs various generally safe, non-conforming
IEEE optimizations

● N=3: This option should be used when performance is more critical
than the level of IEEE standard conformance provided by N=2. This is
the suggested level of optimization for many applications.

● N=4:You should only use this option if your application uses algorithms
which are tolerant of reduced precision.

Floating-Point Optimization Flags Comparison

19

● The table lists some of the optimizations performed; the
compiler may perform other optimizations not listed.

Optimization fp0 fp1 fp2 (default) fp3 fp4

Safety Maximum High High Moderate Low

Complex

divisions

Accurate and

slower

Accurate and

slower

Fast Fast Fast

Exponentiation

rewrite

None None When benefit is

very high

Always Always

Strength

reduction

None None Fast Fast Fast

Rewrite division

as reciprocal

equivalent

None None Yes Aggressive Aggressive

Floating point

reductions

Slow Fast Fast Fast Fast

Expression

factoring

None Yes Yes Yes Yes

Inline 32-bit

operations

No No No Yes Yes

Why are CCE’s results sometimes different?

20

● We do expect applications to be conformant to language

requirements

● This include not over-indexing arrays, no overlap between Fortran

subroutine arguments, and so on

● Applications that violate these rules may lead to incorrect results or

segmentation faults

● Note that languages do not require left-to-right evaluation of arithmetic

operations, unless fully parenthesized

● This can often lead to numeric differences between different compilers

● Use -hadd_paren to add automatically parenthesis to select associative

operations (+,–,*). Default is -hnoadd_paren

● We are also fairly aggressive at floating point

optimizations that violate IEEE requirements

● Use -hfp[0-4] flag to control that

Why are CCE’s results sometimes different? (cont)

21

● Results can vary with the number of ranks or threads

● Use -hflex_mp=option to control the aggressiveness of optimizations

which may affect floating point and complex repeatability when

application requirements require identical results when varying the

number of ranks or threads.

● option in order from least aggressive to most is:

● intolerant: has the highest probability of repeatable results, but also has the

highest performance penalty

● conservative: uses more aggressive optimization and yields higher

performance than intolerant, but results may not be sufficiently repeatable

for some applications

● default: uses more aggressive optimization and yields higher performance

than conservative, but results may not be sufficiently repeatable for some

applications

● tolerant: uses most aggressive optimization and yields highest

performance, but results may not be sufficiently repeatable for some

applications

Fortran Source Preprocessing

22

For a source file to be preprocessed automatically,
it must have an uppercase extension, either .F (for
a file in fixed source form), or .F90, .F95, .F03, .F08,
or .FTN (for a file in free source form). To specify
preprocessing of source files with other
extensions, including lowercase ones, use the -eP
or -eZ options

● -eP: Performs source preprocessing on Fortran source
files, but does not compile. Generates file.1, which
contains the source code after the preprocessing has
been performed and the effects have been applied to the
source program.

● -eZ: similar to -eP, but it also performs compilation on
Fortran source files

Other flags in brief

23

● -h restrict=[a|f]
● C/C++ option which tells the compiler to treat certain

classes of pointers as restricted pointers. You can use this
option to enhance optimizations (this includes
vectorization).

● -h cacheN

● Specifies the levels of automatic cache management to
perform. Values for N are between 0 (cache blocking
turned off) and 3 (aggressive automatic cache
management). Symbols are placed in the cache when the
possibility of cache reuse exists. Default value is N=2.

Other flags in brief (cont)

24

● -h Pic
● Generate position independent code (PIC), which allows a

virtual address change from one process to another, as is
necessary in the case of shared, dynamically linked
objects. The virtual addresses of the instructions and data
in PIC code are not known until dynamic link time.

● -h[system|default]_alloc

● The -hsystem_alloc option causes the compiler to use
the native malloc implementation provided by the OS. By
default, the compiler uses a modified malloc
implementation which offers better support for Cray
memory needs. This is a link-time option.

Diagnostic Flags

25

● -Rb (ftn) or -h bounds (cc/CC)
● Fortran: Enables checking of array bounds at runtime.

● C/C++: Enables checking of pointer and array references
at runtime. -h nobounds disables these checks.

● -eo (ftn) or -hdisplay_opt (cc/CC)

● Display the compiler optimization settings currently in
force.

● -T (ftn)

● Disables the compiler but displays all options currently in
effect.

Recommended CCE Compilation Options

26

● Use default optimization levels
● It’s the equivalent of most other compilers -O3 or -fast

● It is also our most thoroughly tested configuration

● Use -O3,fp3 (or -O3 -hfp3, or some variation) if the application
runs cleanly with these options
● -O3 only gives you slightly more than the default -O2

● We also test this thoroughly

● -hfp3 gives you a lot more floating point optimization (default is -hfp2)

● If an application is intolerant of floating point reordering, try a
lower -hfp number
● Try -hfp1 first, only -hfp0 if absolutely necessary (-hfp4 is the maximum)

● Might be needed for tests that require strict IEEE conformance

● Or applications that have ‘validated’ results from a different compiler

● Do not use too aggressive optimizations , e.g. -hfp4
● Higher numbers are not always correlated with better performance

OpenMP

27

● OpenMP is ON by default
● This is the opposite default behavior that you get from GNU and Intel

compilers

● Optimizations controlled by -OthreadN (ftn) or -hthreadN (cc/CC),
N=0-3 [default N=2]

● To shut off use -O/-h thread0 or -xomp (ftn) or -hnoomp

● Autothreading is NOT on by default
● -hautothread to turn on

● Interacts with OpenMP directives

● If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at
compile time

Cray programming environment: assign

28

● Associates options with Fortran I/O unit numbers and file
names for use during the library open processing, i.e. you
can tell the Fortran runtime how to treat a file, without
changing your code
● assign [assign options] assign_object

● Interesting assign options
● -R removes all assign options for assign_object

● -N <numcon> specifies foreign numeric conversion

● assign_object used to specify the object of assign options
● f:<filename> applies to filename

● u:<unit> applies to Fortran unit number

● g:su applies to all Fortran sequential unformatted files

How to handle byte-swapped files with CCE

29

● Explicit usage of assign
● Can control which files are byte-swapped

 export FILENV=.assign

 assign -R

 assign -N swap_endian f:aof

 aprun a.out

● Link the application with –hbyteswapio
● Forces byte-swapping of all input and output files for direct and

sequential unformatted I/O

● This is equivalent to set

 assign -N swap_endian g:su all sequential unformatted

 assign -N swap_endian g:du all direct unformatted

 More info: man assign (when PrgEnv-cray loaded)

Default Output Formats

30

● List-directed output depends on the value being written
● assign command can be used to change that

● Let’s take this code for example
 integer :: ia(4)

 real :: ra(4)

 ia = 102 ia= 4*102

 ra = 200.10 ra= 4*200.100006

 print *, ' ia=',ia

 print *, ' ra=',ra

 By setting
 export FILENV=FILETMP

 assign -U on g:sf

 and rerunning the code (without recompiling it),

 the output becomes
 ia= 102 102 102 102

 ra= 200.1000 200.1000 200.1000 200.1000

 More info: man assign (when PrgEnv-cray loaded)

Output

CCE Directives

31

● The Cray compiler supports a full and growing set of
directives and pragmas
● Fortran:

● !dir$ concurrent

● !dir$ ivdep

● !dir$ interchange

● !dir$ unroll

● !dir$ loop_info [max_trips] [cache_na] ... Many more

● !dir$ blockable

● For C/C++ replace !dir$ with #pragma [_CRI]
● The _CRI specification is optional; it ensures that the compiler will issue a

message concerning any directives that it does not recognize. Diagnostics
are not generated for directives that do not contain the _CRI specification.

 More info: man directives

 man loop_info

Macros

32

● Cray compilers define the following macros:
● Fortran: _CRAYFTN

● C/C++: _CRAYC

● For example, the macros can be used to ensures that
other compilers will not interpret the directives by
encapsulating them inside #if … #endif

 #if _CRAYC

 #pragma _CRI directive

 #endif

● Some compilers diagnose any directives that they do not recognize.
The Cray C/C++ compilers diagnose directives that are not recognized
only if the _CRI specification is used.

Loopmark: Compiler Feedback

33

● ftn –rm … or cc/CC –hlist=m …

● Compiler generates an <source file name>.lst file
● Contains annotated listing of your source code with letter indicating

important optimizations

%%% L o o p m a r k L e g e n d %%%

Primary Loop Type Modifiers

------- ---- ---- ---------

 a - vector atomic memory operation

A - Pattern matched b – blocked

C - Collapsed f – fused

D - Deleted i – interchanged

E - Cloned m - streamed but not partitioned

I - Inlined p - conditional, partial and/or computed

M - Multithreaded r – unrolled

P - Parallel/Tasked s – shortloop

V - Vectorized t - array syntax temp used

W - Unwound w - unwound

Example: Cray loopmark messages

34

29. b-------< do i3=2,n3-1

30. b b-----< do i2=2,n2-1

31. b b Vr--< do i1=1,n1

32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36. b b Vr--> enddo

37. b b Vr--< do i1=2,n1-1

38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)

39. b b Vr * - a(0) * u(i1,i2,i3)

40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))

41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))

42. b b Vr--> enddo

43. b b-----> enddo

44. b-------> enddo

Example: Cray loopmark messages (cont)

35

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29

 A loop starting at line 29 was not vectorized because a recurrence was found on

"U1" between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29

 A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30

 A loop starting at line 30 was not vectorized because a recurrence was found on

"U1" between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

 A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31

 A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31

 A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37

 A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37

 A loop starting at line 37 was vectorized.

Compiler Message System

36

● The explain command displays an explanation of any
message issued by the compiler. The command takes as an
argument, the message number, including the number's prefix
(ftn- for ftn or CC- for cc/CC)
Example:

% cc bug.c

CC-24 cc: ERROR File = bug.c, Line = 1

An invalid octal constant is used.

int i = 018;

 ^

1 error detected in the compilation of "bug.c".

% explain CC-24

An invalid octal constant is used.

Each digit of an octal constant must be between 0 and

7, inclusive. One or more digits in the indicated

octal constant are outside of this range. Change each

digit in the octal constant to be within the valid

range.

 More info: man explain (when PrgEnv-cray loaded)

Compiler Message System (cont)

37

● -h [no]msgs
● Enables or disables the writing of optimization messages to stderr.

Default is -h nomsgs

● -h [no]negmsgs
● Enables or disables the writing of messages to stderr that indicate

why optimizations such as vectorization, inlining, or cloning did not
occur in a given instance. Default is -h nonegmsgs

● -m n (ftn) or -h msglevel_n (cc/CC)
● Specifies the lowest level of severity of messages to be issued.

Messages at the specified level and above are issued. Values of n are:
● 0: Comment
● 1: Note
● 2: Caution
● 3: Warning (default)
● 4: Error

● -M msgn[,…] (ftn) or -h nomessage=n[:...] (cc/CC)
● Suppresses specific messages at the warning, caution, note, and

comment levels, where n is the number of a message to be disabled
(multiple numbers are possible)

Brief Overview on Intel and GNU

Compilers

© Cray Inc 2013

CCE – GNU – Intel compilers

39

● More or less all optimizations and features provided by
CCE are available in Intel and GNU compilers
● GNU compiler serves a wide range of users & needs

● Default compiler with Linux, some people only test with GNU

● Defaults are conservative (e.g. -O1)
● -O3 includes vectorization and most inlining

● Performance users set additional options

● Intel compiler is typically more aggressive in the optimizations
● Defaults are more aggressive (e.g -O2), to give better performance “out-of-

the-box”
● Includes vectorization; some loop transformations such as unrolling; inlining within

source file

● Options to scale back optimizations for better floating-point reproducibility,
easier debugging, etc.

● Additional options for optimizations less sure to benefit all applications

● CCE is even more aggressive in the optimizations by default
● Better inlining and vectorization

● Aggressive floating-point optimizations

● OpenMP enabled by default

Cray, Intel and GNU compiler flags

40

Feature Cray Intel GNU

Listing -ra (fnt)

-hlist=a (cc/CC)

-opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1

and above

By default at -O2

and above

By default at -O3 or using

-ftree-vectorize

Inter-Procedural

Optimization

-hwp -ipo -flto (note: link-time

optimization)

Floating-point

optimizations

-hfpN, N=0...4 -fp-model

[fast|fast=2|precis

e| except|strict]

-f[no-]fast-math or

-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive

Optimization

-O3 -hfp3 -fast -Ofast -mavx

-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64

-s integer64

-real-size 64

-integer-size 64

-freal-4-real-8

-finteger-4-integer-8

Linking with MKL and PrgEnv-cray

41

● PrgEnv-cray compatible with sequential, not threaded, MKL
● MKL can be used as an alternative to Cray’s libsci for CCE

● Examples assume you have loaded the Intel module (to define the
env var INTEL_PATH)
● Typical case: You want to use MKL BLAS and/or LAPACK

-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \
-Wl,--end-group

● Another typical case: You want to use MKL serial FFTs/DFTs
Same as above (need more for FFTW interface)

● A less typical case: You want to use MKL distributed FFTs
-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_cdft_core -lmkl_intel_lp64 -lmkl_sequential \
-lmkl_core -lmkl_blacs_intelmpi_lp64 \
-Wl,--end-group

● The Intel MKL Link Line Advisor can tell you what to add to your
link line
● http://software.intel.com/sites/products/mkl/

http://software.intel.com/sites/products/mkl/
http://software.intel.com/sites/products/mkl/

Compiler man pages and documentation

42

● For more information on individual compilers

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with CCE and Intel

● --version option on a cc, CC, or ftn command with GNU

● Cray Reference Manuals:
● C and C++: http://docs.cray.com/books/S-2179-81/

● Fortran: http://docs.cray.com/books/S-3901-81/

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

Wrappers man cc man CC man ftn

http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-2179-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/
http://docs.cray.com/books/S-3901-81/

Questions?

43

