
Cray XC30 Architecture Overview

Cray’s recipe for a good supercomputer

● Select best microprocessor

● Function of time

● Surround it with a bandwidth-rich environment

● Interconnection network

● Local memory

● Scale the system

● Eliminate operating system interference (OS jitter)

● Design in reliability and resiliency

● Provide scalable system management

● Provide scalable I/O

● Provide scalable programming

and performance tools

● System service life

Nodes: The building blocks

1/18/2012 Cray Inc. Proprietary
3

The Cray XC30 is a Massively Parallel Processor (MPP)
supercomputer design. It is therefore built from many
thousands of individual nodes.

There are two basic types of nodes in any Cray XC30:

● Compute nodes
● These only do user computation and are always referred to as

“Compute nodes”

● Service nodes
● These provide all the additional services required for the system to

function, and are given additional names depending on their individual
task:
● Login nodes – allow users to log in and perform interactive tasks

● PBS Mom nodes – run and managing PBS batch scripts

● Service Database node (SDB) – holds system configuration information

● LNET Routers - connect to the external filesystem.

There are usually many more compute than service nodes

Connecting nodes together: Aries

4

Obviously, to function as a single supercomputer, the
individual nodes must have method to communicate with
each other.

Compute

node

Compute

node

Service

node

Compute

node

Compute

node

Service

node

Compute

node

Compute

node

Cray XC30 Cabinets

All nodes in the

interconnected by the

high speed, low

latency Cray Aries

Network.

Differences between Nodes

5

Compute nodes

● These are the nodes on which

production jobs are executed

● They run Compute Node Linux, a
version of the OS optimised for
running batch workloads

● They can only be accessed by
submitting jobs through a batch
management system (e.g. PBS Pro,
Moab, SLURM)

● They are exclusive resources that
may only be used by a single user.

● There are many more compute nodes
in any Cray XC30 than login or
service nodes.

Service Nodes

● This is the node you access when

you first log in to the system.

● They run a full version of the CLE
operating system (all libraries and
tools available)

● They are used for editing files,
compiling code, submitting jobs to the
batch queue and other interactive
tasks.

● They are shared resources that may
be used concurrently by multiple
users.

● There may be many service nodes in
any Cray XC30 and can be used for
various system services (login nodes,
IO routers, daemon servers).

Adding Storage

1/18/2012 Cray Inc. Proprietary
6

Neither compute nor service nodes have storage of their
own. It must be connected via the service node’s native
Lustre Client or projected using the Cray Data Virtualization
Service (DVS)

Lustre

OSS

Lustre

OSS

Cray Sonexion

Filesystem

6

General

NFS Filer

Compute

node

Compute

node

LNET

Nodes

Compute

node

Compute

node

DVS

Server

Compute

node

Compute

node

Cray XC30 Cabinets

Service Node

Service Node

Interacting with the system

7

Users do not log directly into the system. Instead they run
commands via an Cray Development Login servers. This
server will relay commands and information via a service
node referred to as a “Gateway node”

Compute

node

Compute

node

LNET

Nodes

Compute

node

Compute

node

Gateway

node

Compute

node

Compute

node

CDL

node

Lustre

OSS

Lustre

OSS

Cray XC30 Cabinets

Cray Sonnexion

Filesystem

E
x
te

rn
a
l
N

e
tw

o
rk

Infiniband links

Ethernet

Cray XC30 Compute Node
Architecture

8

Cray XC30 Compute Node

NUMA Node 1 NUMA Node 0

Cray XC30 Intel® Xeon® Compute Node

9

The XC30 Compute node
features:

● 2 x Intel® Xeon®
Sockets/die
● 12 core Ivybridge

● QPI interconnect

● Forms 2 NUMA nodes

● 8 x 1833MHz DDR3
● 8 GB per Channel

● 64 GB total

● 1 x Aries NIC
● Connects to shared Aries

router and wider network

● PCI-e 3.0

Intel® Xeon®

12 Core die

Aries

Router

Intel® Xeon®

12 Core die

Aries NIC

32GB 32GB

PCIe 3.0

Aries

Network

QPI

DDR3

Intel® Xeon® Ivybridge 12-core socket/die

10

DDR3 Memory Controller

Core

Core

Core

Core

Core

Core

Shared

L3 Cache

Core

Core

Core

Core

Core

Core

QPI PCIe-3.0 System

8GB 8GB 8GB 8GB

Socket/die

Quick Path

Interconnect

(inter die)

External I/O

(Aries)

Ring bus

4 x 1866 MHz

DDR3 Channels

Core

Intel Xeon Ivybridge Core Structure

1/18/2012 Cray Inc. Proprietary
11

● Manufactured on a 22nm
Process

● 256 bit AVX Instructions
(4 double precision
floating point)
● 1 x Add

● 1 x Multiply

● 1 x Other

● 2 Hardware threads
(Hyperthreads)

● Peak DP FP per node
8FLOPS/clock

32KB D1(8-Way)

32KB I1 (8-Way)

2
5
6
K

B
 L

2
 (

8
-W

a
y
)

Fetch

Decode

Scheduler

LSU LSU ALU ALU ALU

AVX

Add

AVX

Mul
AVX

Shuf 3
0
M

B
 S

h
a
re

d
 L

3
 (

1
6
-W

a
y
)

Interlagos/Ivybridge Comparison

12

AMD Opteron “Interlagos” Intel Xeon “Ivybridge”

Base Clock Speed 2.3 GHz 2.7 GHz

Cores per die 6 12

Dies per node 4 2

Each cores has:

 User threads 1 2

 Function group 1 SSE (vector) 1 AVX (vector)

 bits wide 128 bits wide 256 bits wide

 functional units 1 add and 1 multiply 1 add and 1 multiply

 Cache: L1 32KB 32KB

 Cache: L2 512KB 256KB

L3 Cache (per die) 6 MB 30 MB

Total Cache per core 1.5 MB 2.75 MB

Cache BW Per core (GB/s)

 L1/L2/L3 35 / 3.2 / 3.2 100 / 40 / 23

Stream TRIAD BW/node 52 Gbytes/s 100 Gbytes/s

Peak DP FLOPs per core 4 flops/clk 8 flops/clk

Peak DP FLOPs per node 294 GFlops 518 GFlops

Main memory latency 110ns 82ns

XC30 Compute Blade

13

Cray XC30 Fully Populated

Compute Blade

SPECIFICATIONS

Module power: 2014 Watts

PDC max. power: 900 Watt

Air flow req.: 275 cfm

Size: 2.125 in x 12.95 in x 33.5 in

Weight: <40 lbm

14

PDC’s are Upgradeable to New Technology

15

Cray XC30 Quad Processor Daughter Card

Intel Processor (4) Voltage Reg (2) Southbridge (2) DDR Memory (16)

16

Cray XC Service Node

17

SPECIFICATIONS

Module power: 1650 Watts

PDC max. power: 225 Watt

Air flow req.: 275 cfm

Size: 2.125 in x 12.95 in x 33.5 in

Weight: 35 lbs

PCIe

Card

Slots

Riser

Assembly

Intel 2600 Series

Processor

Aries

Compute
Blade

4 Compute
Nodes

Chassis

Rank 1
Network

16 Compute
Blades

No Cables

64 Compute
Nodes

Group

Rank 2
Network

Passive
Electrical
Network

2 Cabinets

6 Chassis

384 Compute
Nodes

System

Rank 3
Network

Active Optical
Network

Hundreds of
Cabinets

Up to 10s of
thousands of
nodes

Cray XC30 System Building Blocks

18

ARCHER’s Nodes

1/28/2014 Cray Inc. Property
19

ARCHER hardware on site today has the following:

● 16 Cabinets = 8 Groups

● 3008 Compute Nodes
● Dual socket 12 core Intel® Xeon Ivybridge @2.7GHz

● 2632 x 64 GB 1866MHz Memory

● 376 x128GB 1866MHz Memory (1 group)

● 32 Service Nodes

● 8 Cray Development Logins
● 256 GB Memory available

● 2 Pre/Post Processing Servers
● 1TB Memory per server

● 20 Sonexion SSUs
● 160 Lustre Object Storage Targets (distributed over multiple

filesystems)

● 4.34 PB of storage (distributed over multiple filesystems)

Cray XC30 Dragonfly
Topology + Aries

20

Cray Aries Features

● Scalability to > 500,000 X86 Cores
● Cray users run large jobs – 20-50% of system size is common
● Many examples of 50K-250K MPI tasks per job
● Optimized collectives MPI_Allreduce in particular

● Optimized short transfer mechanism (FMA)

● Provides global access to memory, used by MPI and PGAS
● High issue rate for small transfers: 8-64 byte put/get and amo in particular

● HPC optimized network

● Small packet size 64-bytes
● Router bandwidth >> injection bandwidth
● Adaptive Routing & Dragonfly topology

● Connectionless design

● Doesn’t depend on a connection cache for performance
● Limits the memory required per node

● Fault tolerant design

● Link level retry on error
● Adaptive routing around failed links
● Network reconfigures automatically (and quickly) if a component fails
● End to end CRC check with automatic software retry in MPI

21

Cray XC30 Rank1 Network

o Chassis with 16 compute blades

o 128 Sockets

o Inter-Aries communication over

backplane

o Per-Packet adaptive Routing

22

16 Aries connected

by backplane

“Green Network”

Cray XC30 Rank-2 Copper Network

23

4 nodes

connect to a

single Aries

6 backplanes

connected with

copper cables in a 2-

cabinet group:

“Black Network”

Active optical

cables interconnect

groups

“Blue Network”

2 Cabinet

Group

768 Sockets

Cray XC30 Routing

24

S

D

With adaptive routing

we select between

minimal and non-

minimal paths based

on load

The Cray XC30 Class-

2 Group has sufficient

bandwidth to support

full injection rate for all

384 nodes with non-

minimal routing

M
Minimal routes

between any two

nodes in a group

are just two hops

Non-minimal route

requires up to four

hops.

R M

M

Cray XC30 Network Overview – Rank-3 Network

● An all-to-all pattern is wired between the
groups using optical cables (blue
network)

● Up to 240 ports are available per 2-
cabinet group

● The global bandwidth can be tuned by
varying the number of optical cables in
the group-to-group connections

Example: An 4-group system is interconnected with 6

optical “bundles”. The “bundles” can be configured between

20 and 80 cables wide

Group 0 Group 1 Group 2 Group 3

25

Adaptive Routing over the Blue Network

● An all-to-all pattern is
wired between the groups

Group 0

Group 1

Group 2

Group 3 Group 4

Assume Minimal

path from Group 0 to

3 becomes

congested

Traffic can “bounce

off” any other

intermediate group

Doubles load on network but

more effectively utilizes full

system bandwidth

Cray XC30 Network

● The Cray XC30 system is built around the idea of optimizing

interconnect bandwidth and associated cost at every level

Rank-1

PC Board

Rank-2

Passive CU

Rank-3

Active Optics

27

Cray XC30 Rank-2 Cabling

● Cray XC30 two-

cabinet group

● 768 Sockets

● 96 Aries Chips

● All copper and

backplane signals

running at 14 Gbps

28

Copper & Optical Cabling

Optical

Connections

Copper

Connections

29

Why is the Dragonfly topology a good idea?

30

● Scalability
● Topology scales to very large systems

● Performance
● More than just a case of clever wiring, this

topology leverages state-of-the-art adaptive
routing that Cray developed with Stanford
University

● Smoothly mixes small and large messages
eliminating need for a 2nd network for I/O traffic

● Simplicity
● Implemented without external switches

● No HBAs or separate NICs and Routers

● Price/Performance
● Dragonfly maximizes the use of backplanes

and passive copper components

● Dragonfly minimizes the use of active optical
components

Storage

31

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
(Compute

node)

Lustre

Client
(Compute

node)

Lustre

Client
(Service

node)

Lustre

Client
(Compute

node)

Lustre

Client
(Compute

node)

Metadata

Server

(MDS)

Object Storage Server

(OSS) +

Object Storage Target

(OST)

name

permissions

attributes

location

Cray Aries Network

Secondary Interconnect

(Inifiniband)

One MDS

per

filesystem

...

Object Storage Server

(OSS) +

Object Storage Target

(OST)

Sonexion: Only Three Components

33

Fully integrated storage module
● Storage controller, Lustre server

● Disk controller, RAID engine

● High speed storage

● Provides both capacity and performance

SSU: Scalable Storage Unit

MMU: Metadata Management Unit

Fully integrated metadata module
● Lustre Metadata software

● Metadata disk storage

● Dual redundant management servers

● Metadata storage target RAID

Fully prepared rack
● Prewired for InfiniBand, Ethernet and power

● Ready for instant expansion

The Cray Programming

Environment

Building software for the Cray XC30

Vision

Sli
de
35

● Cray systems are designed to be High Productivity as well
as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:

● the highest levels of application performance
● a rich variety of commonly used tools and libraries
● a consistent interface to multiple compilers and libraries
● an increased automation of routine tasks

● Cray continues to develop and refine the PE
● Frequent communication and feedback to/from users
● Strong collaborations with third-party developers

Cray Software Ecosystem

CrayPAT

Cray Apprentice2

Cray Iterative

Refinement Toolkit

Cray PETSc, CASK

DVS

GNU

Reveal

Cray Linux

Environment

Cray’s Supported Programming Environment

37

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

Modules

Debugging Support

Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

The Cray Compilation Environment (CCE)

38

● The default compiler on XE and XC systems
● Specifically designed for HPC applications
● Takes advantage of Cray’s experience with automatic vectorization and

and shared memory paralleization

● Excellent standards support for multiple languages and
programming models
● Fortran 2008 standards compliant
● C++98/2003 compliant (working on C++11)
● OpenMP 3.1 compliant, working on OpenMP 4.0
● OpenACC 1.0 compliant (working on OpenACC 2.0)

● Full integrated and optimised support for PGAS languages

● UPC 1.2 and Fortran 2008 coarray support
● No preprocessor involved
● Full debugger support (With Allinea DDT)

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool
● Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

Cray MPI & SHMEM

39

● Cray MPI
● Implementation based on MPICH2 from ANL

● Includes many improved algorithms and tweaks for Cray hardware
● Improved algorithms for many collectives

● Asynchronous progress engine allows overlap of computation and comms

● Customizable collective buffering when using MPI-IO

● Optimized Remote Memory Access (one-sided) fully supported including
passive RMA

● Full MPI-2 support with the exception of
● Dynamic process management (MPI_Comm_spawn)

● MPI-3 support coming soon

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Fully compliant with OpenSHMEM v1.0

● Cray XC implementation close to the T3E model

Cray Scientific Libraries

40

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Adaptive Simplified Eigensolver

Cray Performance Analysis Tools (PAT)

41

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development

Debuggers on Cray Systems

42

● Systems with hundreds of thousands of threads of
execution need a new debugging paradigm
● Innovative techniques for productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree
● running at 216K back-end processes

● ATP - Abnormal Termination Processing
● Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

● Fast Track Debugging

● Debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

● Comparative debugging

● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Support for traditional debugging mechanism
● TotalView, DDT, and gdb

Controlling the environment with
modules

Sli
de
43

Modules

44

● The Cray Programming Environment uses the GNU
“modules” framework to support multiple software
versions and to create integrated software packages

● As new versions of the supported software and associated man pages
become available, they are installed and added to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

● System administrators will set the default version of an application, or
you can choose another version by using modules system commands

● Users can create their own modules, or administrators can install site
specific modules available to many users.

Viewing the current module state

Sli
de
45

● Each login session has its own module state which can be
modified by loading, swapping or unloading the available
modules.

● This state affects the functioning of the compiler wrappers
and in some cases runtime of applications.

● A standard, default set of modules is always loaded at
login for all users.

● Current state can be viewed by running:

$> module list

Default modules example

Sli
de
46

tedwards@swan:~> module list

Currently Loaded Modulefiles:

 1) modules/3.2.6.7

 2) nodestat/2.2-1.0500.41375.1.85.ari

 3) sdb/1.0-1.0500.43793.6.11.ari

 4) alps/5.0.3-2.0500.8095.1.1.ari

 5) MySQL/5.0.64-1.0000.7096.23.1

 6) lustre-cray_ari_s/2.3_3.0.58_0.6.6.1_1.0500.7272.12.1-1.0500.44935.7.1

 7) udreg/2.3.2-1.0500.6756.2.10.ari

 8) ugni/5.0-1.0500.0.3.306.ari

 9) gni-headers/3.0-1.0500.7161.11.4.ari

 10) dmapp/6.0.1-1.0500.7263.9.31.ari

 11) xpmem/0.1-2.0500.41356.1.11.ari

 12) hss-llm/7.0.0

 13) Base-opts/1.0.2-1.0500.41324.1.5.ari

 14) craype-network-aries

 15) craype/1.06.05

 16) cce/8.2.0.181

...

Viewing available modules

Sli
de
47

● There may be many hundreds of possible modules
available to users.
● Beyond the pre-loaded defaults there are many additional packages

provided by Cray

● Sites may choose to install their own versions.

● Users can see all the modules that can be loaded using
the command:
● module avail

● Searches can be narrowed by passing the first few
characters of the desired module, e.g.

tedwards@swan:~> module avail gc

------------------------------- /opt/modulefiles ----------------------------

gcc/4.6.1 gcc/4.7.2 gcc/4.8.0

gcc/4.6.3 gcc/4.7.3 gcc/4.8.1(default)

Further refining available modules

48

● avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering

● -U, --usermodules
● List all modulefiles of interest to a typical user

● -D, --defaultversions

● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -T, --toolmodules

● List all tool modulefiles

● -L, --librarymodules
● List all library modulefiles

● % module avail <product>

● List all <product> versions available

Modifying the default environment

49

● Loading, swapping or unloading modules:
● The default version of any inidividual modules can be loaded by name

● e.g.: module load perftools

● A specific version can be specified after the forward slash.
● e.g.: module load perftools/6.1.0

● Modules can be swapped out in place

● e.g.: module swap intel intel/13.1.1.163

● Or removed entirely
● e.g.: module unload perftools

● Modules will automatically change values of variables like
PATH, MANPATH, LM_LICENSE_FILE... etc
● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts

Summary of Useful module commands

50

● Which modules are available?
● module avail, module avail cce

● Which modules are currently loaded?
● module list

● Load software
● module load perftools

● Change programming environment
● module swap PrgEnv-cray PrgEnv-gnu

● Change software version
● module swap cce/8.0.2 cce/7.4.4

● Unload module
● module unload cce

● Display module release notes
● module help cce

● Show summary of module environment changes
● module show cce

Compiling applications for the Cray XC

Compiler Driver Wrappers (1)

● All applications that will run in parallel on the Cray XC
should be compiled with the standard language wrappers.

The compiler drivers for each language are:
● cc – wrapper around the C compiler
● CC – wrapper around the C++ compiler
● ftn – wrapper around the Fortran compiler

● These scripts will choose the required compiler version,
target architecture options, scientific libraries and their
include files automatically from the module environment.

● Use them exactly like you would the original compiler, e.g.
To compile prog1.f90 run
 ftn -c prog1.f90

Compiler Driver Wrappers (2)

● The scripts choose which compiler to use from the PrgEnv
module loaded

● Use module swap to change PrgEnv, e.g.
● module swap PrgEnv-cray PrgEnv-intel

● PrgEnv-cray is loaded by default at login. This may differ
on other Cray systems.
● use module list to check what is currently loaded

● The Cray MPI module is loaded by default (cray-mpich).
● To support SHMEM load the cray-shmem module.

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

Compiler Versions

● There are usually multiple versions of each compiler
available to users.
● The most recent version is usually the default and will be loaded when

swapping PrgEnvs.

● To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce cce/8.1.6

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

PrgEnv-pgi pgi

About the –I, –L and –l flags

● For libraries and include files covered by module files, you
should NOT add anything to your Makefile
● No additional MPI flags are needed (included by wrappers)

● You do not need to add any -I, -l or –L flags for the Cray provided
libraries

● If your Makefile needs an input for –L to work correctly, try

using ‘.’

● If you really, really need a specific path, try checking
‘module show X’ for some environment variables

OpenMP

● OpenMP is support by all of the PrgEnvs.
● CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by

default. If you have OpenMP directives in your application but do not
wish to use them, disable OpenMP recognition with –hnoomp.

PrgEnv Enable OpenMP Disable OpenMP

PrgEnv-cray -homp -hnoomp

PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

PrgEnv-pgi -mp

Compiler man Pages

● For more information on individual compilers

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with PGI, Intel and Cray

● --version option on a cc, CC, or ftn command with GNU

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

PrgEnv-pgi man pgcc man pgCC man pgf90

Wrappers man cc man CC man ftn

