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Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure
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Decomposition, Recursive Data, …
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Loop Parallelism: The Problem

• Loop Parallelism is an Implementation Strategy

• The Problem: Given a serial program whose run time is 

dominated by a set of computationally intensive loops, how 

can this be translated into a parallel program?

Loop parallelism

Task Parallelism Divide & Conquer
Geometric 

Decomposition
Recursive Data Pipeline

Event-Based 
Coordination Actor Pattern



Loop Parallelism: Context
• There are many existing loop-based programs, particularly in 

scientific and engineering applications

• This type of parallelism can be added to a code incrementally

- Particularly important for large, well-established codes

• Often, little or no restructuring of the code is required

• Not suited to all programs with loops

• Not suited to all system architectures

• Works best with small-scale parallelism

- Not as much of a limitation as you might think, especially with 

prevalence of multi-core

- Can also be used as part of a hybrid solution



Loop Parallelism: Forces

• Sequential Equivalence

- Identical results when run on one or many UEs. 

• Incremental parallelism / refactoring

- This is really what makes this pattern powerful, and a bit different 

from some of the others. It comes into its own when there is 

already an existing serial code

- It would be nice to test each bit of parallelism as we add it

• Loop independence & optimisation

- Can trade off against the other two



Loop Parallelism: Solution
• This pattern is closely aligned with the style of programming 

usually employed with OpenMP

• Find the bottlenecks

• Eliminate loop-carried dependencies

• Parallelise the loops

• Optimise the loop schedule

• Sometimes, to maintain efficiency by minimising the parallel 

loop overhead, it is necessary to

- Join neighbouring loops, or

- Merge nested loops



Finding The Bottlenecks
• Very important!

- Because the incremental parallelisation approach lends itself to making 

changes to a code immediately, it can be tempting to pick a loop (the 

first one?) and put some OpenMP directives around it

• …but just because you can doesn’t mean you should!

• Identify computationally intensive loops taking into account 

representative data sets either through

- Inspection and theoretical analysis of code, or more commonly

- Measuring the performance of the code with performance analysis tools

• Also bear in mind that if the runtime is not dominated by the 

loops, or if not all loops can/will be parallelised, the parallel 

performance will be ultimately limited by Amdahl’s Law.



Eliminating Loop-Carried Dependencies
• Loop iterations must be nearly independent

• Remove dependencies where possible:

- Replace iterative series with closed forms

- Separable dependencies:

• Replicate data, execute task, recombine data

• Use explicit synchronisation to protect shared data

- One-at-a-time execution (often overly conservative)

• OMP Critical

• Owner UE in MP environment

- Non-interfering operations

• OMP Critical with named sections

- Reader/Writer locks 

- More details in Shared Data pattern (later in the lecture)



Replacing with the closed form
int ii=0;jj=0;

for (int i=0;i<N;i++) {

ii++;

d[ii]=time_consuming_work(ii);

jj=jj+i;

a[jj]=large_calculation(jj);

}

for (int i=0;i<N;i++) {

d[i]=time_consuming_work(i);

a[(i*i+i)/2]=large_calculation((i*i+i)/2);

}

• ii and jj create a 

dependency between 

iterations (tasks)

• But ii = i

• And jj is the sum 

of 0 through i



Parallelising The Loops

• Once you’ve dealt with the dependencies, this is the easy bit!

• OpenMP has constructs exactly for this purpose

- which are semantically neutral

• Loops can be parallelised one at a time

- and tested at each stage



Optimising the loop schedule

• !$OMP PARALLEL DO SCHEDULE(type, chunk_size)

- static, dynamic, guided, (runtime, auto)

• Again, this can be added incrementally

• Dynamic is very similar in effect to a task farm

• The DO loop cannot be a DO WHILE, so you can’t do a 

task farm with an unknown number of tasks

• Choice can sometimes be chosen if performance of 

iterations is well understood, but often the best approach 

is to experiment



Other loop optimisations
• Compute times for the loop iterations should be large enough 

to offset the parallel overhead. 

- Merge loops (fusion)

• More loop iterations per UE give greater scheduling flexibility

- Coalesce loops

for (i=0;i<n;i++) {

function_a(i);

}

for (i=0;i<n;i++) {

function_b(i);

}

for (i=0;i<n;i++) {

function_a(i);

function_b(i);

}

for (i=0;i<n1;i++) {

for (j=0;j<n2;j++) {

function_a(i,j);

}

}

for (c=0;c<n1*n2;c++) {

i=c/n1;

j=c%n2;

function_a(i,j);

}



Other Loop Optimisations
• Stripmining

- Enables the use of vector or 

SIMD instructions

for i = 0…n

A(i)=f(i) + k(i)

for i = 0…n by B

for j = i…i+B

A(j)=f(j) + k(i)

• Interchange

- Change order of iterations 

(i.e. column major)

for i=0..n

for j=0..n

A(i,j)=f(i,j)

for j=0..n

for i=0..n

A(i,j)=f(i,j)



Other loop optimisations
• Tiling

- Many cache blocking algorithms are built on this.

- Stripmine several loops and perform interchanges to bring these forward

for i = 0..n

for j = 0..n

for k = 0..n

C(i,j) += A(i,k) * B(k,j)

for ii = 0..n by B

for jj = 0..n by B

for kk = 0..n by B

for i = ii..ii + B

for j = jj..jj + B

for k = kk..kk + B

C(i,j) += A(i,k) * B(k,j)



Other Loop Optimisations

for i = 0…n

for j= 0..n

A(i,j)=B(i,j)+ C(i,j)

D(i,j)=A(i,j-1) * 2

for i = 0…n

for j= 0..n

A(i,j)=B(i,j)+ C(i,j)

for j= 0..n

D(i,j)=A(i,j-1) * 2

• Fission

- Split the loop



Other Loop Optimisations
• Unrolling

- Replicate body to reduce 

overhead

for i = 0…n

A(i)=B(i)+C(i)

for i = 0…n by 4

A(i)=B(i)+C(i)

A(i+1)=B(i+1)+C(i+1)

A(i+2)=B(i+2)+C(i+2)

A(i+3)=B(i+3)+C(i+3)

• Unroll and jam

- Unroll outer loop, merge 

copies of inner loop

for i=0..n

for j=0..m

A(i)=A(i)+B(j)

for i=0..n by 2

for j=0..m

A(i)=A(i)+B(j)

A(i+1)=A(i+1)+B(j)



Performance considerations
• Assumption is that there is a shared address space 

with uniform access time

- Not necessarily true, NUMA architectures

• First touch principal is important

- Data is located local to a thread that first touched it, 

therefore locate initialisation and compute on the same UE.

• False sharing

- Data is not shared, but resides on the same cache line

- These are repeatedly invalidated



False sharing example
N=4

M=1000

double A[N] = 0.0

#pragma omp parallel for private(j,i)

for (j=0; j<N; j++) {

for (i=0; i<M; i++) {

A[j]+=work(i,j)

}

}

#pragma omp parallel for private(j,i,temp)

for (j=0; j<N; j++) {

temp=0.0

for (i=0; i<M; i++) {

temp+=work(i,j)

}

A[j]+=temp;

}



Loop Parallelism / SPMD

• You can have loops in an SPMD program

• Key point with loop parallelism is that you never explicitly 

mention a thread ID

• Often SPMD is process based whereas loop parallelism is 

thread based

- Requires a fundamental difference in thinking between shared nothing 

and shared everything

- These patterns can be mixed (i.e. hybrid MPI-OpenMP) which might 

give extra performance/scalability at the cost of code complexity



Loop Parallelism => OpenMP?

• Often synonymous with OpenMP on CPUs

• Possible in OO languages with parallel iterators

• HPF

- forall

• UPC

- upc_forall(init;  test;  update;  affinity)

• Fortress

- Loops are parallel by default!

• Others

- par (parallel) and for (sequential)



SunCast example

• They are all about improving the energy efficiency of buildings

- SunCast enables them to study the impact of the sun’s rays on both 

existing and architectural designs

- They can then understand the relation of the sun to the thermal 

properties of the building and general comfort

• Their algorithm was serial and they wanted to be able to run 

this on multi-core laptops

• Integrated Environmental 

Solutions is a Glasgow 

based SME that EPCC 

worked with a few years ago



SunCast example
• There are quite a few different 

sun position scenarios that 

need to be calculated

- Each of which is a loop

• There are also multiple rays from the sun hitting the building 

at any one time which need to be calculated

– These rays are also in a loop

do i = 22 to 70

do j = 1 to num_rays

……

end do 

end do

• Loop parallelism can therefore be 

applied at two levels – at each 

position & for each ray

– Sped up calculation from a few hours 

to under an hour on a laptop



Loop parallelism: Summary

• Loop Parallelism has an unusual property – that it is an 

incremental parallelism pattern

• Loop Parallelism can also leave programs runnable in serial

• Useful since so many programs are loop based

• The programming model for OpenMP

• Some gotya’s to be aware of



Fork-Join: The Problem

• You have a problem where the 

number of concurrent tasks varies 

throughout the execution of the 

program and a simple control 

structure such as a parallel loop is 

not sufficient. How can a parallel 

program be constructed around 

the dynamic set of tasks?



Fork-Join: The Context
• Applicable where the algorithm imposes an irregular or 

dynamic control structure

• Tasks are created dynamically (forked) and terminated (joined

with the forking task) as the program continues to execute

• In some cases, the forking pattern would be very regular. In 

these cases, loop parallelism (discussed in a later lecture) 

would be a better choice

- Fork-Join is more generally applicable

- Loop parallelism can be thought of as a special case of Fork-Join

• A good match, for example, with the divide & conquer pattern 

discussed previously



Fork-Join: The Forces

• Algorithms often imply relationships between tasks, with 

the relationships arise dynamically. It can be useful to 

have the relationship between the UEs closely match the 

relationship between the tasks

• A one-to-one mapping between UEs and tasks is usually 

natural

- but this must be balanced against the number of UEs that a system 

can handle

• UE creation and destruction are expensive operations. It 

may be desirable to structure the program so as to restrict 

the number of forks and joins.



Relationship to Parallel Algorithm Strategy

Divide & Conquer

Fork-Join

Task Parallelism

Event-Based 
Coordination

PipelineGeometric 
Decomposition

Recursive Data



Fork-Join: The Solution

• Two Possible Solutions:

- Direct task/UE mapping

- Indirect task/UE mapping

• With Fork-Join the UEs are usually (but don’t have to be) 

threads

• In both cases, a fork results in an extra thread (or several 

extra threads) being assigned to the problem and a join 

results in the removal of threads from working on the 

problem



Direct Mapping

• The simplest case

- …and a common one

• Map each task to a single UE

• As new tasks are created, new UEs are created

• There is almost always a synchronisation point where the 

parent (forking) UE waits for the forked tasks to complete 

and the forked UE to re-join



Indirect Mapping

• Use a thread pool

• Create threads at the start

- usually with same number of UEs as PEs

• Cheaper than thread creation/destruction

• Forking corresponds to taking a thread from the thread 

pool and joining returns it to the thread pool

• A bit like a low-level implementation of the Master-Worker 

pattern which will be discussed in more detail later



Fork-Join: OpenMP, Java, MPI
• The Fork-Join pattern is the standard programming model in 

OpenMP

- OpenMP programs start as a single thread and on reaching a parallel 

construct, a team of threads is forked

- At the end of the parallel region, the threads rejoin their parent

- In the case of loops, you get the special case of loop parallelism

• The Fork-Join pattern is also the standard implementation 

model for Java threads

- Java also provides classes/interfaces to help manage Fork-Join in 

java.util.concurrent

• Fork-Join can be implemented with MPI, but it’s not such a 

natural fit

- In this case, indirect mapping / process pools are often used 



Fork Join in OpenMP

• Using non iterative loop directives

• Parallel sections

#pragma omp parallel sections

{

#pragma omp section

{

……

}

#pragma omp section

{

……

}

}

Fork - one thread 

executes code in here

Fork - one thread 

executes code in here

Join - all threads block 

here



Fork Join in OpenMP

• Tasks
#pragma omp parallel

{

#pragma omp task

some task

#pragma omp task

some task

#pragma omp task

some task

#pragma omp taskwait

}

• Tasks run at scheduling points (such as implicit/explicit barriers)

• This can be more flexible than sections but also the synchronisation using taskwait

can be more complex

Fork – enqueue a task to 

be executed by a thread 

at some point

Fork – enqueue a task to 

be executed by a thread 

at some point

Fork – enqueue a task to 

be executed by a thread 

at some point

Join – wait for all tasks to 

complete



Other languages too…..



Conclusions

• Fork-Join implementation strategy is suitable for irregular 

or dynamic control structures

- Tasks are created (forked) and terminated (joined) dynamically


