
Parallel Design

Patterns

Implementation Strategies – SPMD, Master/Worker

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

How do we implement the algorithm?

3

Finding Parallelism

• Task Decomposition, Data Decomposition, Group Tasks, Order
Tasks, …

Algorithm Strategy

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Implementation Strategy (Supporting Structures)

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

Overview of supporting structures

4

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures

Implementation

mechanisms

Implementation

Strategy

Algorithm

Strategy

Finding

parallelism

Implementation Strategy – Forces

• How do we structure the software to best support the

algorithm(s) of interest?

5

𝑆(𝑃) =
𝑇 1

𝑇(𝑃)

𝑃 ≡ # PEs
• Clarity of abstraction

• Scalability

• Efficiency

• Maintainability

• Environmental affinity

• Sequential equivalence 𝐸 𝑃 =
𝑆 𝑃

𝑃
=

𝑇(1)

𝑃𝑇(𝑃)

Which implementation strategy?

6

• SPMD and Master/Worker can be used for all algorithm strategies.

• Fork/Join: all except Recursive Data.

• Vectorisation: all except Pipeline and Event-based Coordination.

• Active Messaging: all except Geometric Decomposition and Recursive Data.

• Loop Parallelism can be used with Task Parallelism, Divide & Conquer and

Geometric Decomposition.

SPMD, Master/Worker, Loop Parallelism,

Fork/Join, Vectorisation, Active Messaging

Task Parallelism, Divide & Conquer, Geometric Decomposition,

Recursive Data, Pipeline Event-based Coordination, Actor Pattern
Algorithms

Implementations

Which implementation is likely to be

most appropriate?

7

Task Parallelism

Geometric Decomposition
Divide & Conquer

Pipeline
Recursive Data

Event-based Coordination
Actor Pattern

SPMD

Task Parallelism
Actor Pattern

Divide & Conquer
Geometric Decomposition

Pipeline

Recursive Data

Event-based Coordination

Master/Worker

Algorithm Strategy

Implementation Strategy

Which implementation is likely to be

most appropriate?

8

Task Parallelism

Geometric Decomposition
Divide & Conquer

Loop Parallelism

Task Parallelism

Geometric Decomposition
Divide & Conquer
Recursive Data

Vectorisation

Algorithm Strategy

Implementation Strategy

Which implementation is likely to be

most appropriate?

9

Divide & Conquer

Pipeline

Event-based Coordination
Task Parallelism

Geometric Decomposition

Actor Pattern
Fork/Join

Event-based Coordination
Actor Pattern

Divide & Conquer
Task Parallelism

Active Messaging

Algorithm Strategy

Implementation Strategy

Which implementation mechanism?

10

• OpenMP can be used for all implementation strategies.

• MPI and Java: all except Vectorisation.

SPMD, Master/Worker, Loop Parallelism,

Fork/Join, Vectorisation, Active Messaging

Implementation Strategies

OpenMP, MPI, Java

Mechanisms

Which mechanism is likely to be most

appropriate?

11

Loop Parallelism

Vectorisation
SPMD

Fork/Join
Master/Worker

Active Messaging
OpenMP

SPMD

Active Messaging
Master/Worker
Loop Parallelism

Fork/Join

MPI

Fork/Join
Loop Parallelism

Master/Worker

Active Messaging
SPMD

Java

Mechanism

Implementation Strategy

Which implementation technology is best

supported?

• None of the aforementioned implementation mechanisms have

specific support for Vector or Highly Pipelined architectures.

12

Shared: OpenMP (strong), Java (strong).

Distributed: MPI (strong), Java (average), OpenMP (weak).

Memory Architectures

SPMD – Single Program Multiple Data

• SPMD is an Implementation Strategy

• It is the interactions between tasks that introduce most of

the difficulty in writing correct and efficient parallel

programs.

• How can parallel programs be structured in order to limit

the complexity of the program and ensure these

interactions are manageable?

13

SPMD – Introduction

• How to manage multiple tasks on multiple UEs?

• The tasks and UEs interact either through exchange of

messages or by sharing memory.

• The operations carried out on each UE are similar.

- data will be different and the details of the calculation might be

different for different UEs (e.g. boundary conditions)

14

SPMD – Introduction

• Since UEs do similar things, it makes sense to encode the

parallel algorithm in a single program, executed by all UEs.

- also means that the interactions between processes are usually

described in code right beside the calculations

• this is convenient, but can also cause problems

• This pattern is so common that it can be hard to recognise

as a pattern.

15

SPMD – Introduction

• Most parallel languages use the SPMD pattern as

their model of parallelism.

- almost any program written in a parallel language can be

described as SPMD

- SPMD is often used in conjunction with other more

specialised patterns

- SPMD together with MPMD are considered by some to be

the two subdivisions of MIMD (from Flynn's Taxonomy)

- SPMD is fundamental to MPI and also very important to

OpenMP

• A “pure” SPMD OpenMP program would consist of a single

parallel region

16

SPMD – Forces

• Using similar code on each UE is easier for the

programmer but still allows for different UEs to operate on

different data and run different operations.

• Software typically outlives any given parallel computer.

- encourages programmers to assume the lowest common

denominator in programming environments

• Achieving the highest performance from a given

architecture requires that a program be well aligned with

the computer's architecture.

17

SPMD – Solution

• Use a single source-code image (i.e. identical binary

executables) that runs on each UE.

• The program will have the following parts.
1. initialise

2. obtain unique identifier

3. distribute data

4. run the same program on each UE using the unique ID to

differentiate between behaviour on different UEs

5. finalise

18

SPMD – Comments

• It's easy to write bad (opaque) code in this pattern,

particularly if the unique identifier is used in complex

indexing algebra.

• Highly optimised SPMD codes can sometimes bear little

resemblance to the equivalent serial code.

- code becomes structured around the communication pattern

• An important advantage of SPMD is that overheads

associated with start-up and termination occur only at the

start and end of the program.

19

SPMD – Comments

• SPMD can be highly scalable.

- up to thousands of cores

- there are often lots of options for complex handling of parallelism,

but this is a trade off against simplicity

• Closely aligned with environments based on message

passing.

- SPMD is a natural fit with MPI

• SPMD is very general and can be used to implement

many of the other patterns.

20

Master/Worker (or Task Farming)

• How should a program be organised when the design

is dominated by a need to dynamically balance the

work on a set of tasks among the UEs?

• The Master/Worker pattern is very good for addressing

load balancing issues.

- workloads associated with the tasks are highly variable and

unpredictable

- capabilities of the PEs available differ across the system, or

over time

- parts of the hardware might fail during code run

21

Master/Worker – Introduction

• Tasks are not tightly coupled: they don't need to be active

at the same time in order to share data.

• Particularly relevant for problems following the Task

Parallelism pattern where there are no dependencies

between tasks.

22

Master/Worker – The Forces

• The work for each task (and possibly capabilities of the PE)

varies unpredictably.

• Operations to balance load tend to impose communications

overhead.

- a balance is therefore required between having a smaller number of

larger tasks with fewer communications, and a larger number of

smaller tasks which are easier to load-balance.

• Programming logic required to balance load can complicate

the implementation of a program and needs to be balanced

against code complexity.

23

Master/Worker – Solution

• Have the work distributed amongst one logical entity (the

master) and one or more other entities (the workers) in

such a way that the master splits up the problem and

allocates tasks to workers.

- typically, workers report their results back to the master

24

25

Master

Worker

Initiate computation

Setup problem

Create a task pool

Launch workers

Sleep until work is done

Collect results

Terminate computation

Initialise

Fetch task

Compute results

got task?

exit

no

yes

Master/Worker – Basic solution

26

Master

Worker

Initiate computation

Set up problem

Create a bag of tasks

Launch workers

Sleep until result received

Collect result

Terminate computation

Initialise

Fetch task

Compute results

got task?

exit

no

yes

Send results

got all results?
no

yes

Master/Worker – Variation

Other Master/Worker variations

• Avoid a centralised task pool (which can be a bottleneck)

by implementing work-stealing.

- instead of sleeping, the master task embarks on one of the

unassigned tasks in the pool

• can be complicated if it must also be ready to receive messages from

workers (in order to assign new tasks)

• Various implementation details can vary, such as whether

tasks and results are pushed by the master or pulled by

the worker.

27

Extensions
• Setup a second queue of assigned tasks.

- can be used to introduce a level of fault-tolerance

• Pass the results to a different entity from that which

produces the tasks.

- MapReduce is based on this idea

28

Detecting Completion – Simple case

• In the simplest case, all tasks added to pool before

workers begin.

- workers continue until there are no tasks left and then terminate

- master continues until it has received (and processed) results from

all tasks and then terminates

• Alternatively, Master checks for global completion

condition then places “poison pills” in the shared queue

of tasks (Master could also empty task queue/pool).

- worker detects completion criteria and then reports this back to

master along with results

29

Detecting Completion – More complex

• The hardest case is when tasks can be created as the

program runs (as for Divide & Conquer pattern).

• An empty task pool does not necessarily mean that there

is no more work to do.
• need to ensure that the task pool is empty and that there are no workers

still running

• particular care must be taken when asynchronous messages are used

to ensure that there are no tasks in-transit

• There are several known algorithms that solve this

problem.
• choice depends on logic that controls when tasks branch

30

Implementation Points

• Task pool can be implemented with Shared Queue,

although many other mechanisms are possible.

- tuple space, distributed queue, monotonic counter

• Master/Worker pattern works well on clusters and SMP

machines.

- SMP beneficial if input or output data for tasks is large

• Beneficial if platform provides mechanism for managing

the task pool.

- either with a full implementation of a shared queue, or at least

being able to asynchronously respond to requests for work

31

Master/Worker and Fork/Join

• The Fork/Join pattern can be used to implement

Master/Worker.

- and vica versa

• This possibility depends on what support is provided by

the programming environment.

- with MPI you typically have a fixed number of processes running

• these processes can form a process pool, and the processes could be

assigned to tasks when a fork needs to be implemented

- with OpenMP you have a way of forking processes

• these could be used to create a set of threads that could be used as the

worker threads in a Master/Worker model

32

Master/Worker example – BOINC

• Open source middleware for supporting volunteer

distributed computing.

- people donate their CPU time to different projects, often

contributing when their machine is idle

- over 60 projects listed

• Over 4 million concurrent users, over 400,000 actively

computing at any one time, approximately 16 PFLOPS

overall.

33

Master/Worker example – BOINC

• Project servers (masters) split the problem into work units

which are then sent to volunteer machines (workers).

- two workers for each work unit for correctness reasons

• Flexible enough to take advantage of many different

architectures including GPUs.

34

Master/Worker example – BOINC

• Project servers are architected specially for distributed

computing.

- work unit trickling where partial results can be sent back before the

overall computation has been completed by the worker

- locality scheduling where the master attempts to send units of work

to workers who already have some or all of the necessary data files

- optimisation of work distribution based on volunteer machines,

where tasks are selected based on the capabilities of a worker

- different ways of validating the results of work units, from bit

comparison to fuzzy matching

- multiple project servers (masters) can work together seamlessly

35

Master/Worker example – BOINC

36

Master/Worker – Comments

• Master/Worker algorithms have good scalability as long as...

- number of tasks greatly exceeds number of workers

- load imbalance is handled appropriately

• avoid having large tasks execute last, otherwise other UEs could be left idle

• Management of the task pool can require global communication.

• Master/Worker not tied to any particular platform, but useful if

there are structures to support managing the task pool.

• Master/Worker is closely related to Loop Parallelism with

dynamic scheduling.

• Pattern can be applied to large scale distributed computing.

37

Master/Worker – Conclusions

• One master UE, hands out work amongst many worker

UEs as they become available.

• Master/Worker works well when you have lots of

independent (or very-nearly independent) tasks.

• Particularly useful when the work associated with tasks

has the following properties.

- involve unequal or unknown amounts of work

- can give rise to other tasks as the program progresses

38

