
Parallel design patterns 

ARCHER course
The actor pattern



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


The Actor Pattern

• The Actor Pattern is a Parallel Design Pattern in the algorithm 

strategy/parallel algorithm structure space

• It does not fit directly into the classification of other patterns

- It is closely related to Event Based Coordination

• Forces and context are basically the same as event based coordination

- Major organising feature of the actor pattern is where parallelism will be 

unpredictable
Start

Organise By 
Tasks

Linear

Task 
Parallelism

Recursive

Divide and 
Conquer

Organise By 
Data 

Decomposition

Linear

Geometric 
Decomposition

Recursive

Recursive Data

Organise By 
Flow of Data

Regular

Pipeline

Irregular

Event-Based 
Coordination

• Was first described as the 

“actor model” by Carl Hewitt

- In the 1970s as a way of 

organising software



The Actor Pattern
• Like event-based co-ordination, the 

solution is to map real-world entities on to 

tasks with a 1:1 mapping

Actor

Actor

Actor

• The mapping of tasks to UEs is often 1:1, but it’s also quite 

common to map several (in some cases, many) tasks to 

each UE

• Conceptually the model is of independent actors interacting 

only through the exchange of messages

– Actor pattern uses the terminology “message”

– A “message” is like an event, and it has an intended recipient (another actor)

– Very similar to an MPI message but note that an MPI message is between 

processes and an Actor message is between actors



Contrast with Event based coordination

Borrower
Borrower
Borrowers

Librarian

Self Check-

Out Machine

Drop-Off Box

Reshelver

Shelf

• In event based coordination we are concerned with books flowing 

between the entities (event handlers)

• In the actor patterns each of these is a different actor, communication 

can involve the transfer of books but also other items (such as fines 

from the librarian.)



Everything is an Actor
• The Actor Pattern “philosophy” is:

Everything is an Actor

• In the same spirit to

- “everything is an object” in OO programming

- “everything is a file” in UNIX

• This is a way of thinking about your problem



Everything an actor?

• In fact, just like with all patterns, the Actor pattern can be 

combined with other patterns

- …but don’t use non-actor components just because they’re more 

familiar to you

- Try to think within the actor pattern and make everything an actor

• Why make everything an Actor?

- Maintains a symmetry

• All elements in the program can interact in the same way: Through 

messages

• Don’t need to add the complication of how actors communicate with 

non-actors

• As soon as we start to add none actors then loose some of the 

advantages of this model



An actor can…
• Receive a message from any actor

• Do computational work

• Send a message to another actor

• Create a new actor

• Die

• It is entirely up to a specific actor to decide how to respond to 

a message from another and different actors might very well 

respond in different ways

• They maintain their own state



An actor should

• Be perfectly encapsulated, ideally there should not be any 

shared state between them

• Represent and be anything

- Within an actor can still use other parallel patterns to help with 

computational work

• An actor doesn’t need to care about what other actors are 

doing (apart from understanding their messages.)



Things that can be actors
• Objects representing particles, people, animals, books, or any 

real-life entity

• Grid cells

- an alternative to domain decomposition

- useful, for example, when the actual geometry is less important and the 

main interaction with the grid cell is with other actors

• Global features / fields

- Actors don’t have to represent something localised in space

• Clocks

- Actors generally act asynchronously and out-of-lockstep

- It is sometimes useful to have some global notion of time which can be 

implemented by a clock Actor which sends messages to those Actors 

that need to be aware of global time

- Time is often coarse grained without notion of computational steps



Benefits of the actor pattern
• Very flexible

- As anything can be an actor then (theoretically) we can use this to 

model just about anything

- If your system contains a number of different types of entities that need 

to interact then this can be helpful

• Actors encompass the ideas of modularity and encapsulation

- As they are self contained and atomic, it should be trivial to add new 

types of actors

- Do need a way to ensure that other actors can deal with messages from 

them

• Easy to conceptualise so can simplify parallelisation

- Such as deadlock avoidance



Criticisms of the actor pattern
• There is often less order to the system

- How do we do effective load balance if the actors have different 

computational requirements?

- As actors can create other actors dynamically the state of the 

system can change dramatically and unpredictably.

• Can involve many messages flowing around 

unpredictably

- Hard to design any locality into communication

- Need to be careful when it comes to message ordering (as in the 

event based coordination model)

- Unbounded nondeterminism, where the delay in servicing a 

message can appear to have no limit whilst still guaranteeing that 

the request will eventually be serviced.



Programming Languages & Libraries

• ABCL

• AmbientTalk

• Axum

• E

• Erlang

• Fantom

• Humus

• Io

• Ptolemy Project

• Rebeca Modeling Language

• Reia

• Rust

• SALSA

• Scala

• Scratch

• Akka

• Ateji PX

• F# MailboxProcessor

• Korus

• Kilim

• ActorFoundry (based on Kilim)

• ActorKit

• Retlang

• Jetlang

• Haskell-Actor

• GPars (was GParallelizer)

• PARLEY

• Pykka (inspired by Akka)

• Termite Scheme

• Theron

• Libactor

• Actor-CPP

• S4

• libcppa

Source: Wikipedia (http://en.wikipedia.org/wiki/Actor_model)

http://en.wikipedia.org/wiki/Actor-Based_Concurrent_Language
http://en.wikipedia.org/wiki/AmbientTalk
http://en.wikipedia.org/wiki/Axum_(programming_language)
http://en.wikipedia.org/wiki/E_(programming_language)
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Fantom_(programming_language)
http://en.wikipedia.org/wiki/Humus
http://en.wikipedia.org/wiki/Io_(programming_language)
http://en.wikipedia.org/wiki/Ptolemy_Project
http://en.wikipedia.org/wiki/Rebeca_Modeling_Language
http://en.wikipedia.org/wiki/Reia_(programming_language)
http://en.wikipedia.org/wiki/Rust_(programming_language)
http://en.wikipedia.org/wiki/SALSA_programming_language
http://en.wikipedia.org/wiki/Scala_(programming_language)
http://en.wikipedia.org/wiki/Scratch_(programming_language)


The practicalities of the actor pattern

• MPI is not a perfect fit for the Actor pattern but when used in 

the right way, MPI can be used to implement the Actor pattern

- What’s more, if you want to run an Actor Pattern-based code on a 

massively parallel machine, you probably don’t have a lot of choice

• or at least, your other choices just have different shortcomings

• Harder things to do with MPI:

- Creation and destruction of Actors

- Fire-and-forget asynchronous messages

• Unnecessary aspect of MPI:

- Program looks like it’s SPMD. All actors have to start off running the 

same program



One Actor per UE
• Advantages

- Conceptually more simple

- Exposes most parallelism

- Actor messages map directly to MPI messages

- It’s possible (although not always desirable) to use MPI ranks to index 

the actors

• Disadvantages

- Might require a very large number of UEs

- Load balancing might become an issue

UE

Actor

UE

Actor

UE

Actor

UE

Actor

UE

Actor



Multiple Actors per UE

• Advantages

– Less low level parallel overhead (number of UEs can match target 

architecture)

– Actor creation and destruction is simpler as don’t need to create any 

UEs

– Can mix actors with different computational requirements

• Disadvantages

– You loose symmetry (actors on the same UE (local) as well as remote 

actors can communicate)

– Need to provide your own messaging solution, such as an event 

queue for each UE.

UE

Actor

Actor

Actor

UE

Actor

Actor

UE

Actor

UE

Actor

Actor

Actor

UE

Actor

Actor



What type of MPI message to use?



Buffered Sends for Actor Messages

• None are perfect but the best one to is a buffered send, 

as this is the closest fit to fire-and-forget

• int MPI_Bsend(void *buf, int count, 

MPI_Datatype datatype, int dest, int tag, 

MPI_Comm comm)

- buf initial address of send buffer (choice)

- count number of elements in send buffer (nonnegative integer)

- datatype datatype of each send buffer element (handle)

- dest rank of destination (integer)

- tag message tag (integer)

- comm communicator (handle)



How buffered sends work
• MPI_Bsend causes the contents of data to be copied into 

an internal MPI buffer

• As soon as the contents of data have been copied, the 

call completes and the process moves on to next line in 

the program

- You can then re-use / modify data without the message being 

affected

- It is not guaranteed that the message has been received by the 

receiver, and there’s no way to check that the message has been 

received

• The programmer must specify the size of the buffer with 

MPI_Buffer_attach

• If the buffer is full, your program will error



MPI_Buffer_attach

• int MPI_Buffer_attach(void *buffer, int

size)

- buffer initial buffer address (choice)

- size buffer size, in bytes (integer)

• For an actor pattern which could have many messages in 

transit, you should probably start with a large buffer size 

(allowing, say, hundreds of messages to be buffered)



What should I send?
• Contents of the buffer could, in general, be some kind of 

message structure

• In practice, if your application allows it, it can be far simpler to 

use a known (basic) data type, with a known count

- For example, if you know that the only data that needs to be included 

with any of your messages is of integer type, and you know that you’ll 

never need to send more than two integers in a message, you can also 

use an integer to define your message type and just make all of your 

sends and receives of the form

• MPI_Bsend(data, 3, MPI_INTEGER, …)

• MPI_Irecv(data, 3, MPI_INTEGER, …)

Where integer 1 is the command/type and 2 & 3 are data associated with it



Receiving Messages
• MPI requires matching sends and receives

• The actor pattern requires that an actor can get on with doing 

what it is doing and not have to wait for messages, we have 

two choices (I find the second tends to be simpler):

- MPI_Irecv but the downside is keeping track of request handles and 

cancelling this in termination

- MPI_Iprobe to check for messages and then MPI_Recv if a message is 

outstanding can be simpler – as no request handles.

• Since buffered sends are used, MPI messages can queue up, 

so for a simple implementation you only need to post one 

receive at a time

- If you need to “look ahead” in your queue, you might want more



An Actor in MPI

• If process is time consuming, it could just add message to a 

local message queue to be handled during 

do_compute_work_step

do {

MPI_Irecv(message, …, request)

while not MPI_Test(request,…){

do_compute_work_step()

}

process(message)

}

do {

MPI_Iprobe(…, outstanding, status)

if (!outstanding) {

do_compute_work_step()

} else {

MPI_Recv(message, 

process(message, …, status.MPI_SOURCE, …)

}

}

Simple codes just wait 

here for a message

• Both 

do_compute_work_step

and process functions 

could include 

MPI_Bsends to send off 

new messages



Receiving data from anyone
• Remember that an actor might (unpredictably) receive data 

from any other actor

- It is therefore common to use MPI_ANY_SOURCE in place of a 

receiver's explicit process id

- Can have a look at the MPI status to figure out the pid of the sender

MPI_Request request;

MPI_Status status;

MPI_Irecv(&message, 3, MPI_INT, 

MPI_ANY_SOURCE, …, 

&request)

MPI_Wait(&request, &status);

int source=status.MPI_SOURCE;

MPI_Status status;

int outstanding;

MPI_Iprobe(MPI_ANY_SOURCE, …, 

outstanding, &status)

if(outstanding) {

int source=status.MPI_SOURCE;

……

}

In Fortran the status is an integer array, 

status(MPI_STATUS_SIZE), and the source rank is an element 

of this array which you can grab via status(MPI_SOURCE)



Creation and Destruction of Actors (1)

• One of the requirements of an Actor is that it can create 

other actors.

• Even if you’re doing a 1:1 mapping of actors to UEs you 

often want to avoid creating new MPI processes when 

creating a new actor.

• Solution: A process pool

- At the start of the program, launch more processes than you’ll ever 

have actors

- Ensure that the program never creates more actors than this limit



Creation and Destruction of Actors (2)
• The problem with the solution:

- How do the actors know if there are processes left in the pool?

• The solution:

- Use a master process to manage new actors

- Have a special master process with its own actor whose job it is to 

manage the process pool

- When an actor wants to create a new actor, it sends a message to the 

master with the required information, and it’s the master’s job to assign 

an MPI process from the process pool to the new actor

• You effectively use a master-worker pattern with the worker’s task being: 

become an actor, and keep going through your event loop until you die 

We will be playing with a process pool in the 

mergesort practical and also the actor case study



Social simulations (traffic in Kyoto)

• Roads are actors (50,000)

• Cars are actors (up to 100,000)

• Time is coarse grained (run up to 200 days)

Individual actors

• Determine their own destination

• Regulate their speed

• Avoid collisions

• Find the optimum path



Conclusions
• We have talked about the Actor Pattern, similar to event 

based co-ordination but with some differences

- Actors can create other actors and die

- No need for external events

- Actors can perform work not driven by messages

• A useful pattern which has the potential to be very 

important in the future

- The loose synchronisation might be crucial for extremely large core 

counts

• MPI isn’t a perfect fit for the implementation, but can be 

used

- Dynamic creation/destruction of actors is tricky


