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Pipelines – Problem

• A problem involves operating on a sequence of data items.

• The overall calculation can be viewed as data flowing 

through a sequence of stages and being operated on at 

each stage.

• How can the potential parallelism be exploited?
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Pipelines – Introduction

• An assembly line is provides a very good analogy.

- instead of a partially assembled car, we have data

- instead of workers or machines, we have UEs

• Pipelines are found at many levels of granularity.

- instruction pipelining in CPUs

- signal processing

- graphics

- shell programs in UNIX

• The pipeline pattern exploits problems involving tasks with 

straightforward ordering constraints.
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Pipelines – The Forces

• A good solution should make it easy to express 

ordering constraints.

- should be simple and regular

- should be compatible with the concept of data flowing 

through a pipe

• Target platform should be borne in mind.

- it might be possible to implement a pipe stage in hardware

• In some applications, future modifications to (or 

reordering of) the pipeline should be anticipated.
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Pipelines – The Solution

• Idea is captured by the assembly line analogy.

• Assign each computation stage to a different UE and 

provide a mechanism so that each stage of the pipeline 

can send data elements to the next stage.
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Snapshot of pipeline at t = 3
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Flow through pipeline
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Pipeline architectures
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Defining the stages of the pipeline

• Normally each pipeline stage will correspond to one task.

• Pipeline stage shuts down when...

- it has counted that it has completed all tasks (if count is known)

- or it receives a shut-down “sentinel” (poisoned pill) through the pipe

• Concurrency is limited by the number of stages.

- data must be transferred between stages

• Pattern works best if...

- runtime per stage is constant

- runtime is large compared to time spent filling/draining pipeline

- or, equivalently, latency is small compared to bandwidth

• depends on pipeline length and number of data elements
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Structuring the computation

• First define the overall computation - this aspect of the 

solution is driven by the Implementation Strategy.

• Pipeline commonly used with SPMD pattern.

- using a UE’s identifier to differentiate between options in a case 

statement, where each option is a pipeline stage

• Pattern can be combined with other Algorithm Strategies 

to help balance load amongst stages.

- e.g. one pipeline stage could be parallelised with Task Parallelism

11



Representing the dataflow

• Driven by the available supporting structures in the 

language/architecture.

• MPI: map dataflow between elements to messages.

- one process is mapped to each stage in the pipeline

• Shared Memory: use the Shared Queue pattern.
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Pipeline code sketch

• The sending of data can be non-blocking (i.e. a buffered call).

• Your termination sentinel could be an empty message or you 

could check the number of data elements received.
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1. initialise

2. while (not done) {

3. block receive data from previous stage

4. process data

5. send processed data onto next stage

6. }

7. send termination sentinel to next stage

8. finalise

• Each pipeline stage will have the following code structure.



Handling errors

• Obvious potential for “a spanner in the works”.

• If there’s an error in one part of the pipeline, it has 

potential to break the whole flow. 

• Common solution is to have a separate “error handling” 

task (or tasks) with which pipeline elements can 

communicate.

• Important to keep the pipeline flowing.

- pass an error sentinel or a “noop” result (like a NaN)

- implementation can depend on whether you need a 1:1 

correspondence between input tokens and output tokens

14



Processor allocation & task scheduling

• The simplest approach is one PE per pipeline stage.

- good load balance if the PEs are similar and the amount of work 

per pipeline stage is roughly the same

• What if there are fewer PEs than pipeline stages.

- combine stages into a single bigger stage

- or, assign neighbouring stages to the same PE

• reduces communication overhead

• ideally, stages do not share resources

• What if there are more PEs than pipeline stages.

- parallelise a stage (add task parallelism within pipeline)

- or, run multiple pipelines (pipeline within task parallelism)

• fine, as long as there are no reduction constraints on data
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Throughput and latency

• Usually throughput is the most important.

- number of data items per time unit that can be processed once the 

pipeline is full

• With small sets of data, or for real-time processing such 

as live video processing, latency becomes significant.

- limits length of pipeline
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Instruction pipelines

• Fetch | Decode | Execute

- although, Intel Pentium 4 

had 20-stage pipeline
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UNIX instruction pipeline

• Starts three processes and uses buffers implemented as shared 

queues.

• Processes are connected by their stdin and stdout streams.

• Multiple-part command is implemented as an anonymous pipe. 

- breaks as soon as processes complete

• UNIX also provides named pipes which can persist between 

program invocations.

- persistent pipes created with mkfifo command and handled like files
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cat datafile | grep “energy” | awk ‘{print $2, $3}’



Graphics pipelines
• Hardware (GPUs)

- ROP (raster operation) pixel 

pipelines

• between memory and compute-

core in NVIDIA GPUs

- pipeline hardware can be thought 

of as special caches

• that apply transformations to data 

in-flight between the GPUs 

processing cores and memory
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• Software

- support for pipelines in OpenGL and Direct3D libraries

- option for pipeline stages to be handled by dedicated (on-chip) hardware

• not directly supported by OpenCL or CUDA

GeForce2 Ultra GPU, NVIDIA, 2000



The OpenGL pipeline

• The OpenGL programming model is based on the 

pipeline pattern.

• This allows OpenGL compilers/drivers to make optimal 

use of specific pieces of hardware on the GPU or 

graphics card.

- the underlying implementation is based on a lower-level pipeline

• As long as the programmer works with the pipeline 

model, the details of the hardware implementation can be 

thoroughly hidden from the programmer.
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The OpenGL pipeline continued
• The original version had a complex pipeline.

- alternative paths determined by special modes of operation

• More recent versions have a simpler pipeline with 

programmable stages.

- closer to GPGPU programming with CUDA or OpenCL
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• Please note, this is just an overview of OpenGL intended 

to illustrate the relevance of the pipeline pattern.
• http://www.cs.utexas.edu/~fussell/courses/cs384g-

spring2016/lectures/lectures.html

http://www.cs.utexas.edu/~fussell/courses/cs384g-spring2016/lectures/lectures.html


Pipelines – Conclusion

• Pipelines exist at various levels within software and 

hardware.

• The Pipeline Pattern is particularly useful when the 

problem can be mapped onto underlying hardware,       

e.g. GPUs, Vector Processors.

• This pattern is also useful more generally and often used 

together with other patterns for applications characterised 

by a regular flow of data.

• A generalisation of Pipeline termed workflow (or dataflow) 

is becoming more and more relevant to large, distributed 

scientific workflows.
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Event Based Coordination – Problem

• Event Based Coordination is a Parallel Algorithm Strategy.

• An application can be decomposed into groups of semi-

independent tasks interacting in an irregular fashion.

- The interaction is determined by the flow of data and ordering 

constraints.

• How can the tasks and their interactions be arranged so 

that they can run concurrently?
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Event-Based Coordination – Context

• Semi-independent entities interacting in an irregular fashion.

• Unlike the Pipeline Pattern there is...

- no restriction to a linear flow of data 

- any given UE might communicate with any other UE

- interactions take place at irregular (and unpredictable) intervals

• Related to discrete-event simulation.

- Simulations of real-world processes, in which real-world entities are 

modeled by objects that interact through events

• Sometimes desirable to compose existing (possibly serial) 

program components into a parallel program without 

changing the components.
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Discrete-Element Simulation – Example

• Modeling the flow of books in a library...
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• Crucially, each stage is fundamentally still responding to 

some data (event) arriving at it and does nothing otherwise.
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Event-Driven Applications

• This pattern is not just for simulations; it can be applied to 

real-time applications.

- monitoring and controlling systems in a power station

• Most GUI-based applications are event-driven.

- events come from user (keyboard, mouse, etc) and system

- not massively parallel but can benefit from parallelism

• Distributed applications

- events come overs network

• Google Docs, more complex then you might think!
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Event-Based Co-ordination – Forces

• A good solution should...

- make it easy to express ordering constraints

• constraints might be numerous and irregular and arise dynamically

- expose as much parallelism as possible by allowing as many 

concurrent activities as possible

• Any solution should permit the expression of constraints 

in ways common to other patterns such as...

- sequential composition

- shared variables representing state
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Event-Based Co-ordination – Solution

• Events are sent from one task (source) to another (sink).

- implies an ordering constraint

- computation consists of processing events

• One task per real-world entity.

- and usually one UE per task

• A solution consists of...

- defining the tasks

- representing event flow

- enforcing event ordering

- avoiding deadlocks

- scheduling processor allocation

- efficient communication of events
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Defining the Tasks

• Each task will have the following structure.
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1. initialise

2. while (not done) {

3. receive event

4. process event

5. send events

6. }

7. finalise

• If program is being composed from existing components, 

these can be “wrapped” to give an event based interface.

- this is an example of the Facade pattern (GoF)



Representing Event Flow

• Allow communication and computation to overlap and to 

avoid serialisation where possible.

- events need to be communicated asynchronously

• In a message-passing environment, an event can be 

represented by a message sent asynchronously from the 

task that generated it to the task that is to process it.

• In a shared-memory environment, a shared queue can be 

used to simulate message passing.

• Other communication abstractions can also be used.

- Tuple Spaces, JavaSpaces, TSpaces
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Enforcing Event Ordering

• This is probably the hardest step in applying this pattern.

• Enforcement might require a task to process events in a 

different order to that received.

- note the word received not sent: MPI’s guaranteed P2P message 

ordering is not necessarily enough to protect you here!

- events are often received from different UEs which can arrive in 

any order so need to be aware of any constrains here too

• It is therefore sometimes necessary, depending on the 

approach taken, to “look ahead” in an event queue to 

determine what the correct behaviour.
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Event Ordering – a sluice gate
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Event Ordering – a sluice gate
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Event Ordering

• Some mechanisms that can help with event ordering 

constraints are global clocks and synchronisation events.

• Before you spend time trying to enforce event ordering...

- check if event path is linear

- check if application cares whether or not events are out of order

• There are two approaches if ordering does matter.

- optimistic: proceed and deal with problems later

• by initiating rollback for example

- pessimistic: wait for a synchronisation event or similar

• ensures ordering constraint is met but creates overhead
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Avoiding Deadlocks

• A common problem with this pattern.

• You can get the normal message passing deadlocks, but 

with event-driven simulation you can also have 

application-level deadlocks.

- deadlocks caused by implementation error or by “model error”

• Deadlocks can arise from being overly pessimistic.

- possible to use runtime deadlock detection

• often inefficient as a general solution

• local timeouts can work well in place of full deadlock detection
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Scheduling and Processor Allocation

• Most straightforward approach is one task (and one UE) 

per processing element (PE)

- allows all tasks to execute concurrently

• Also possible to have several tasks and therefore 

several UEs per PE.

- suboptimal efficiency, but often difficult to avoid

• Load balancing with this pattern can be difficult.

- infrastructures that support task migration can assist

37



Efficient Communication of Events

• This model implies considerable communication.

- therefore, you need an efficient underlying communication system, 

whether it’s message-based or shared-memory based

• With a message passing environment it may be possible 

to combine messages (or split them perhaps) to improve 

efficiency.

• With a shared-memory environment, care must be taken 

that shared queues are implemented efficiently, as these 

can easily become bottlenecks.
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Comments

• Sometimes you can get increased parallelism if you can 

work with partial answers.

- may only need a certain number of events to compute a result

- UEs in the system can work on part of the problem asynchronously 

and return “best current guess” in response to a received event

- the “best guess” can be subsequently refined if required

• This pattern is closely related to the Actor pattern.
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UBS Financial Information Exchange

• Real time market data for quotes, 

orders & executions

- peak bandwidth of 16 million items per sec

- low latency: events processed in msec

• Stages run concurrently...

- in a separate thread on custom hardware

- “compute in the data plane”

• Low level optimisation...

- at networking, OS and runtime level

- using FPGA based hardware
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http://www.bcs.org/upload/pdf/application-of-high-performance-

and-low-latency-computing-in-investment-banks-080115.pdf
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Event-Based Coordination: Summary

• Designed for problems characterised by irregular flow of data.

• Maps real-world entities to tasks.

• Models real-world interactions with events.

• The hardest part to get right is often the event ordering.

- communication is not instantaneous, whereas the real-world interactions 

you’re modelling often are synchronous.

• Model details not necessarily dependent on parallelisation 

strategy of code.

• Pattern can be applied to existing code components. 
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