
Parallel Design

Patterns

Pipelines and Event Based Coordination

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Pipelines – Problem

• A problem involves operating on a sequence of data items.

• The overall calculation can be viewed as data flowing

through a sequence of stages and being operated on at

each stage.

• How can the potential parallelism be exploited?

3

Pipelines – Introduction

• An assembly line is provides a very good analogy.

- instead of a partially assembled car, we have data

- instead of workers or machines, we have UEs

• Pipelines are found at many levels of granularity.

- instruction pipelining in CPUs

- signal processing

- graphics

- shell programs in UNIX

• The pipeline pattern exploits problems involving tasks with

straightforward ordering constraints.

4

Pipelines – The Forces

• A good solution should make it easy to express

ordering constraints.

- should be simple and regular

- should be compatible with the concept of data flowing

through a pipe

• Target platform should be borne in mind.

- it might be possible to implement a pipe stage in hardware

• In some applications, future modifications to (or

reordering of) the pipeline should be anticipated.

5

Pipelines – The Solution

• Idea is captured by the assembly line analogy.

• Assign each computation stage to a different UE and

provide a mechanism so that each stage of the pipeline

can send data elements to the next stage.

6

D3 D2D4 D1

Stage 1 Stage 2

Snapshot of pipeline at t = 3

7

C2

D2D3D5 D4 D1

C1C3

Flow through pipeline

8

time

Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

Pipeline Stage 4

D1 D2 D3 D4 D5 D6

D1 D2 D3 D4 D5 D6

D1 D2 D3 D4 D5 D6

D1 D2 D3 D4 D5 D6

t =1 t =4 t =7

Pipeline architectures

9

Stage 1 Stage 2 Stage 3 Stage 4

Linear

Stage 1 Stage 2

Stage 3a

Stage 3b

Stage 4

Non-linear

Defining the stages of the pipeline

• Normally each pipeline stage will correspond to one task.

• Pipeline stage shuts down when...

- it has counted that it has completed all tasks (if count is known)

- or it receives a shut-down “sentinel” (poisoned pill) through the pipe

• Concurrency is limited by the number of stages.

- data must be transferred between stages

• Pattern works best if...

- runtime per stage is constant

- runtime is large compared to time spent filling/draining pipeline

- or, equivalently, latency is small compared to bandwidth

• depends on pipeline length and number of data elements

10

Structuring the computation

• First define the overall computation - this aspect of the

solution is driven by the Implementation Strategy.

• Pipeline commonly used with SPMD pattern.

- using a UE’s identifier to differentiate between options in a case

statement, where each option is a pipeline stage

• Pattern can be combined with other Algorithm Strategies

to help balance load amongst stages.

- e.g. one pipeline stage could be parallelised with Task Parallelism

11

Representing the dataflow

• Driven by the available supporting structures in the

language/architecture.

• MPI: map dataflow between elements to messages.

- one process is mapped to each stage in the pipeline

• Shared Memory: use the Shared Queue pattern.

12

Pipeline code sketch

• The sending of data can be non-blocking (i.e. a buffered call).

• Your termination sentinel could be an empty message or you

could check the number of data elements received.

13

1. initialise

2. while (not done) {

3. block receive data from previous stage

4. process data

5. send processed data onto next stage

6. }

7. send termination sentinel to next stage

8. finalise

• Each pipeline stage will have the following code structure.

Handling errors

• Obvious potential for “a spanner in the works”.

• If there’s an error in one part of the pipeline, it has

potential to break the whole flow.

• Common solution is to have a separate “error handling”

task (or tasks) with which pipeline elements can

communicate.

• Important to keep the pipeline flowing.

- pass an error sentinel or a “noop” result (like a NaN)

- implementation can depend on whether you need a 1:1

correspondence between input tokens and output tokens

14

Processor allocation & task scheduling

• The simplest approach is one PE per pipeline stage.

- good load balance if the PEs are similar and the amount of work

per pipeline stage is roughly the same

• What if there are fewer PEs than pipeline stages.

- combine stages into a single bigger stage

- or, assign neighbouring stages to the same PE

• reduces communication overhead

• ideally, stages do not share resources

• What if there are more PEs than pipeline stages.

- parallelise a stage (add task parallelism within pipeline)

- or, run multiple pipelines (pipeline within task parallelism)

• fine, as long as there are no reduction constraints on data

15

Throughput and latency

• Usually throughput is the most important.

- number of data items per time unit that can be processed once the

pipeline is full

• With small sets of data, or for real-time processing such

as live video processing, latency becomes significant.

- limits length of pipeline

16

Instruction pipelines

• Fetch | Decode | Execute

- although, Intel Pentium 4

had 20-stage pipeline

17

A bubble in an instruction pipeline

Courtesy of Wikipedia, 2011

Instruction pipelines

• Fetch | Decode | Execute

- although, Intel Pentium 4

had 20-stage pipeline

18

A bubble in an instruction pipeline

Courtesy of Wikipedia, 2011

UNIX instruction pipeline

• Starts three processes and uses buffers implemented as shared

queues.

• Processes are connected by their stdin and stdout streams.

• Multiple-part command is implemented as an anonymous pipe.

- breaks as soon as processes complete

• UNIX also provides named pipes which can persist between

program invocations.

- persistent pipes created with mkfifo command and handled like files

19

cat datafile | grep “energy” | awk ‘{print $2, $3}’

Graphics pipelines
• Hardware (GPUs)

- ROP (raster operation) pixel

pipelines

• between memory and compute-

core in NVIDIA GPUs

- pipeline hardware can be thought

of as special caches

• that apply transformations to data

in-flight between the GPUs

processing cores and memory

20

• Software

- support for pipelines in OpenGL and Direct3D libraries

- option for pipeline stages to be handled by dedicated (on-chip) hardware

• not directly supported by OpenCL or CUDA

GeForce2 Ultra GPU, NVIDIA, 2000

The OpenGL pipeline

• The OpenGL programming model is based on the

pipeline pattern.

• This allows OpenGL compilers/drivers to make optimal

use of specific pieces of hardware on the GPU or

graphics card.

- the underlying implementation is based on a lower-level pipeline

• As long as the programmer works with the pipeline

model, the details of the hardware implementation can be

thoroughly hidden from the programmer.

21

The OpenGL pipeline continued
• The original version had a complex pipeline.

- alternative paths determined by special modes of operation

• More recent versions have a simpler pipeline with

programmable stages.

- closer to GPGPU programming with CUDA or OpenCL

22

Primitives
Vertex

Shader

Fragment

Shader

Pixels in

the Frame

Buffer

• Please note, this is just an overview of OpenGL intended

to illustrate the relevance of the pipeline pattern.
• http://www.cs.utexas.edu/~fussell/courses/cs384g-

spring2016/lectures/lectures.html

http://www.cs.utexas.edu/~fussell/courses/cs384g-spring2016/lectures/lectures.html

Pipelines – Conclusion

• Pipelines exist at various levels within software and

hardware.

• The Pipeline Pattern is particularly useful when the

problem can be mapped onto underlying hardware,

e.g. GPUs, Vector Processors.

• This pattern is also useful more generally and often used

together with other patterns for applications characterised

by a regular flow of data.

• A generalisation of Pipeline termed workflow (or dataflow)

is becoming more and more relevant to large, distributed

scientific workflows.

23

Event Based Coordination – Problem

• Event Based Coordination is a Parallel Algorithm Strategy.

• An application can be decomposed into groups of semi-

independent tasks interacting in an irregular fashion.

- The interaction is determined by the flow of data and ordering

constraints.

• How can the tasks and their interactions be arranged so

that they can run concurrently?

24

Event-Based Coordination – Context

• Semi-independent entities interacting in an irregular fashion.

• Unlike the Pipeline Pattern there is...

- no restriction to a linear flow of data

- any given UE might communicate with any other UE

- interactions take place at irregular (and unpredictable) intervals

• Related to discrete-event simulation.

- Simulations of real-world processes, in which real-world entities are

modeled by objects that interact through events

• Sometimes desirable to compose existing (possibly serial)

program components into a parallel program without

changing the components.

25

Discrete-Element Simulation – Example

• Modeling the flow of books in a library...

26

Borrowers Librarian

Shelf

• Crucially, each stage is fundamentally still responding to

some data (event) arriving at it and does nothing otherwise.

Self Check-

Out Machine

Drop-Off Box

Event-Driven Applications

• This pattern is not just for simulations; it can be applied to

real-time applications.

- monitoring and controlling systems in a power station

• Most GUI-based applications are event-driven.

- events come from user (keyboard, mouse, etc) and system

- not massively parallel but can benefit from parallelism

• Distributed applications

- events come overs network

• Google Docs, more complex then you might think!

27

Event-Based Co-ordination – Forces

• A good solution should...

- make it easy to express ordering constraints

• constraints might be numerous and irregular and arise dynamically

- expose as much parallelism as possible by allowing as many

concurrent activities as possible

• Any solution should permit the expression of constraints

in ways common to other patterns such as...

- sequential composition

- shared variables representing state

28

Event-Based Co-ordination – Solution

• Events are sent from one task (source) to another (sink).

- implies an ordering constraint

- computation consists of processing events

• One task per real-world entity.

- and usually one UE per task

• A solution consists of...

- defining the tasks

- representing event flow

- enforcing event ordering

- avoiding deadlocks

- scheduling processor allocation

- efficient communication of events

29

Defining the Tasks

• Each task will have the following structure.

30

1. initialise

2. while (not done) {

3. receive event

4. process event

5. send events

6. }

7. finalise

• If program is being composed from existing components,

these can be “wrapped” to give an event based interface.

- this is an example of the Facade pattern (GoF)

Representing Event Flow

• Allow communication and computation to overlap and to

avoid serialisation where possible.

- events need to be communicated asynchronously

• In a message-passing environment, an event can be

represented by a message sent asynchronously from the

task that generated it to the task that is to process it.

• In a shared-memory environment, a shared queue can be

used to simulate message passing.

• Other communication abstractions can also be used.

- Tuple Spaces, JavaSpaces, TSpaces

31

Enforcing Event Ordering

• This is probably the hardest step in applying this pattern.

• Enforcement might require a task to process events in a

different order to that received.

- note the word received not sent: MPI’s guaranteed P2P message

ordering is not necessarily enough to protect you here!

- events are often received from different UEs which can arrive in

any order so need to be aware of any constrains here too

• It is therefore sometimes necessary, depending on the

approach taken, to “look ahead” in an event queue to

determine what the correct behaviour.

32

Event Ordering – a sluice gate

33

Controller

Upstream

Gate

Downstream

Gate

Dry

Close

Downstream

Closed

OpenField

Monitor

Event Ordering – a sluice gate

34

Controller

Upstream

Gate

Downstream

Gate

Dry

Close

OpenField

Monitor
Saturated

Open

Close

Upstream

Closed

Downstream

Closed

Event Ordering

• Some mechanisms that can help with event ordering

constraints are global clocks and synchronisation events.

• Before you spend time trying to enforce event ordering...

- check if event path is linear

- check if application cares whether or not events are out of order

• There are two approaches if ordering does matter.

- optimistic: proceed and deal with problems later

• by initiating rollback for example

- pessimistic: wait for a synchronisation event or similar

• ensures ordering constraint is met but creates overhead

35

Avoiding Deadlocks

• A common problem with this pattern.

• You can get the normal message passing deadlocks, but

with event-driven simulation you can also have

application-level deadlocks.

- deadlocks caused by implementation error or by “model error”

• Deadlocks can arise from being overly pessimistic.

- possible to use runtime deadlock detection

• often inefficient as a general solution

• local timeouts can work well in place of full deadlock detection

36

Scheduling and Processor Allocation

• Most straightforward approach is one task (and one UE)

per processing element (PE)

- allows all tasks to execute concurrently

• Also possible to have several tasks and therefore

several UEs per PE.

- suboptimal efficiency, but often difficult to avoid

• Load balancing with this pattern can be difficult.

- infrastructures that support task migration can assist

37

Efficient Communication of Events

• This model implies considerable communication.

- therefore, you need an efficient underlying communication system,

whether it’s message-based or shared-memory based

• With a message passing environment it may be possible

to combine messages (or split them perhaps) to improve

efficiency.

• With a shared-memory environment, care must be taken

that shared queues are implemented efficiently, as these

can easily become bottlenecks.

38

Comments

• Sometimes you can get increased parallelism if you can

work with partial answers.

- may only need a certain number of events to compute a result

- UEs in the system can work on part of the problem asynchronously

and return “best current guess” in response to a received event

- the “best guess” can be subsequently refined if required

• This pattern is closely related to the Actor pattern.

39

UBS Financial Information Exchange

• Real time market data for quotes,

orders & executions

- peak bandwidth of 16 million items per sec

- low latency: events processed in msec

• Stages run concurrently...

- in a separate thread on custom hardware

- “compute in the data plane”

• Low level optimisation...

- at networking, OS and runtime level

- using FPGA based hardware

40

http://www.bcs.org/upload/pdf/application-of-high-performance-

and-low-latency-computing-in-investment-banks-080115.pdf

http://www.bcs.org/upload/pdf/application-of-high-performance-and-low-latency-computing-in-investment-banks-080115.pdf

Event-Based Coordination: Summary

• Designed for problems characterised by irregular flow of data.

• Maps real-world entities to tasks.

• Models real-world interactions with events.

• The hardest part to get right is often the event ordering.

- communication is not instantaneous, whereas the real-world interactions

you’re modelling often are synchronous.

• Model details not necessarily dependent on parallelisation

strategy of code.

• Pattern can be applied to existing code components.

41

