
Parallel design patterns

ARCHER course
Recursive data, task parallelism,

divide and conquer

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/

RECURSIVE DATA

Start

Organise By
Tasks

Linear

Task
Parallelism

Recursive

Divide and
Conquer

Organise By
Data

Decomposition

Linear

Geometric
Decomposition

Recursive

Recursive
Data

Organise By
Flow of Data

Regular

Pipeline

Irregular

Event-Based
Coordination

Recursive Data – Problem

• Given a problem described by an algorithm which

involves moving through a data structure in a seemingly

sequential way, how can the algorithm be modified to

expose parallelism?

Recursive Data – Context

• Many problems with recursive data structures can be

solved with Divide & Conquer

- If this can be used, use it.

- Some other algorithms appear to have to move sequentially

through the data structure and computing the result at each

element.

• It’s often possible to re-cast a calculation so that instead

of acting on each element in the data structure in turn, the

operations are modified so as to expose parallelism

• Also referred to as Pointer Jumping or Recursive

Doubling

Recursive Data – An Example

• Finding Roots in a Forest

- For each node compute the root of the tree containing that node

- Example from J. Já Já, An Introduction to Parallel Algorithms,

Addison-Wesley (1992)

• Sequentially (DFS):

• O(N) execution time

4

3

1

2

5

6

7

4

10

8

9

12

11 13 14

1

2

3 4

6
5

7 12

8

9

10

11

Recursive Data – An Example

• Naive parallelism where we could operate on subtrees in

parallel but can not operate on all element concurrently

because how can we find the root of a node without knowing

its parent’s root

• But heavily reliant on the structure of the tree and still not

great

4

3

1

2

5

6

7

4

10

8

9

12

11 13 14

1

2

3 3

44

1 1

2

3

4

1

Recursive Data – An Example

• Let’s rethink the problem

• Step 1 – Compute the one hop (direct) parent of each

node

• Here each element can be worked on concurrently (we

can therefore have 14 tasks)

4

3

1

2

5

6

7

4

10

8

9

12

11 13 14

Recursive Data – An Example

• Step 2 – Compute the parent’s parent (2 hops away) if

applicable

4

3

1

2

5

6

7

4

10

8

9

12

11 13 14

Recursive Data – An Example
• Step 3 – Compute the 3 hops away if applicable

• The algorithm contains much more work than the sequential

one O(N log N) vs O(N) but runtime is now O(log N)

• By reshaping the algorithm we have exposed additional

concurrency

4

3

1

2

5

6

7

4

10

8

9

12

11 13 14

Recursive Data – Forces

• Recasting the problem to ensure that parts of the data

structure can be operated on independently usually

increases the total amount of work to be performed

- This is a trade-off that has to be considered

• Recasting the problem may be difficult

- In some cases may even be impossible

- Often results in less intuitive design

• Can be harder to understand and maintain

• Parallelism exposed may not be efficiently exploitable

- e.g. the result could be too fine-grained or require excessive

communication

Recursive Data – Solution
• A general solution is difficult to express, but generally consists

of

- Starting from a single element of the data structure

- Try to determine a means of finding the solution for that element of the

data structure by a technique that does not involve waiting for the

neighbouring data structure to return a full solution, e.g.,

• Iteratively follow pointers of neighbouring elements without actually waiting for

them to have computed their ultimate result

• Build up a final result from smaller calculations that can be performed locally

• Features of the solution

- Data decomposition: Usually one element of data structure per UE

- Structure: Typically a loop of iterations; operate simultaneously on every

element once each iteration. Typical operations include “replace each

element’s successor with its successor's successor.”

- Synchronisation: Typically at end of each iteration (manual or implied)

Example: Partial sums of a linked list

k=pid()

temp[k]=next[k]

x0 x1 x2 x3 x4 x5 x6 x7

x0:x0 x1:x1 x2:x2 x3:x3 x4:x4 x5:x5 x6:x6 x7:x7

x0:x0 x0:x1 x0:x2 x0:x3 x0:x4 x0:x5 x0:x6 x0:x7

x0:x0 x0:x1 x1:x2 x2:x3 x3:x4 x4:x5 x5:x6 x6:x7

x0:x0 x0:x1 x0:x2 x0:x3 x1:x4 x2:x5 x3:x6 x4:x7

while temp[k] != null {

x[temp[k]]=x[k]+x[temp[k]]

temp[k]=temp[temp[k]]

}

A word of warning with this pattern…..

• As the work required goes from O(N) to O(N log N) we can get

caught out by this if we don’t have enough UEs

- i.e. N=1024, time per step is t. Therefore sequentially it would take 1024

* t .

- Total work with this pattern is O(N log N) = 1024 * 10 * t = 10240*t

- With 1024 UEs, the total runtime is 10*t

- But, if we only have 2 UEs, then the runtime is 5120*t

- In this example the break even point is 10 UEs, therefore carefully

consider if the pattern is worth applying

• Potential best scaling can sometimes be limited, but often

preferable to running in serial

TASK PARALLELISM

Start

Organise By
Tasks

Linear

Task
Parallelism

Recursive

Divide and
Conquer

Organise By
Data

Decomposition

Linear

Geometric
Decomposition

Recursive

Recursive Data

Organise By
Flow of Data

Regular

Pipeline

Irregular

Event-Based
Coordination

“Task Parallelism”

• Here we focus on the Task Parallelism Pattern

• We’re looking at a particular Problem in a particular

Context and its Solution

• The phrase is also used in other contexts (with varying

but related meanings)

- A common differentiation is between “Task Parallelism” and “Data

Parallelism”

• a more general definition than encompassed by this pattern

Task Parallelism – Problem

• When a problem is naturally decomposed into a collection

of tasks that can execute concurrently, how can this

concurrency be exploited efficiently?

Task Parallelism - Context
• All parallel algorithms can ultimately be broken down into

concurrent tasks

- There can be more than one way to do this

• This pattern is about problems that are best dealt with by an

algorithm that is focussed on these tasks and their

interactions.

- The design is based directly on the tasks

• Arguably this pattern is defined best by what it does not

include, namely:

- Geometric Decomposition (organised by data), Pipeline (organised by

the flow of data)

• Tasks can be completely independent, or there can be

interdependencies

Examples
• Molecular Dynamics

Simulation

- Often actually uses more than

one pattern, but conceptually

• Moving n particles: O(n) tasks

• Calculating the forces between

particles: O(n2) tasks

• Computer game

- User control

- Game physics

- Render

- AI

- Music

- Sound effects

Task Parallelism - Forces

• The same aspects of the problem that influence the

pattern to consider are also relevant to how concurrency

can be best exploited:

- Efficiency

- Simplicity

- Portability

- Scalability

• An important consideration here is load balance

• Correct management of interdependencies

Task Parallelism – Solution

• Consider each of the following in turn and then together:

1. Tasks

2. Dependencies

3. Schedule

• How tasks are assigned to processes, threads

- Processes & threads referred to as Units of

Execution (UEs)

• Note that this is still one step away from how these

are run on hardware

-Hardware elements referred to as Processing

Elements (PEs)

Tasks

• There should be at least as many tasks as UEs

- Preferably many more

• Allows more flexibility in scheduling and potentially better load balance

• The computation associated with each task must be large

enough to offset overheads like task management and

dependencies between tasks

• If your design does not meet these criteria, then can you split

in a way that results in more, computation rich, tasks?

Dependencies
• Ordering constrains

- Task groups must execute in a specific order i.e. we must set the

boundary conditions & initial values before computing the initial residual.

- Could think of the problem as a sequential composition of task parallel

groups i.e.

(boundary conditions and initial values) ; initial residual ;

(solution residual and jacobi iteration)

• Shared data dependencies

- Data shared between tasks, ranging from none (embarrassingly parallel)

to lots (tightly coupled.)

- Our practical example isn’t too bad, but you do need to exchange

neighbouring data

Categorising dependencies
• Removable dependencies

- Can remove by code transformation

- E.g. transforming iterative expressions to closed form

int ii=0;jj=0;

for (int i=0;i<N;i++) {

ii++;

d[ii]=time_consuming_work(ii);

jj=jj+i;

a[jj]=large_calculation(jj);

}

for (int i=0;i<N;i++) {

d[i]=time_consuming_work(i);

a[(i*i+i)/2]=large_calculation((i*i+i)/2);

}

• ii and jj create a

dependency between

tasks

• But ii = i

• And jj is the sum

of 0 through i

Categorising dependencies

• Separable dependencies

- When dependencies involve accumulation into a shared data

structure

- Replicate some data at the start of a task: replicated data

- execute task

- recombine replicated data

• often a reduction operation

- reductions supported directly in, e.g., MPI, OpenMP

• Other dependencies

- If shared data can not be pulled out of the tasks and is read/write

then it is difficult

- Apply Shared Data pattern

Scheduling
• Closely related to the Implementation

Strategy

• Scheduling is critical to load balancing

- Schedules can be static or dynamic

• Static scheduling

- useful for regular, predictable workloads

- can also be useful for more “random” loads by

using round-robin allocation

• Dynamic scheduling can be done with,

e.g. task queues, work stealing

- Helpful when not all tasks are known in

advance

Poor load balancing

Better load balancing

Task Parallelism: Languages &

Architectures

• Task Parallelism can be done with nearly all parallel

languages

- The decision between, say, OpenMP and MPI is more likely to be

based on the chosen Implementation Strategy

• Explicitly data-parallel languages such as HPF are an

exception, although (contrived) solutions exist to use HPF

- External libraries

- Mixed-mode with MPI

• Often map well onto loop parallelism, master/worker or

SPMD implementation strategies.

Example: Dinosaurs

Example: Star Extractor

1 134.0376 292.1414 …… 0.0000

2 239.6541 192.4977 …… 0.0014

3 307.1008 305.6235 …… 0.5181

4 319.4861 263.6567 …… 1.0000

5 263.3937 58.7983 …… 0.7457

6 171.7773 120.8677 …… 0.3741

7 16.1523 31.4022 …… 0.6030

0.0000

0.0014

0.3741 1.0000

0.7457

0.3741

0.6030

• Each input image is run as a concurrent,

independent task

- Identifying objects and classifier neural network

• The classifier neural network can operate

on each object as an independent task

DIVIDE & CONQUER

Start

Organise By
Tasks

Linear

Task Parallelism

Recursive

Divide and
Conquer

Organise By
Data

Decomposition

Linear

Geometric
Decomposition

Recursive

Recursive Data

Organise By
Flow of Data

Regular

Pipeline

Irregular

Event-Based
Coordination

Divide & Conquer - Problem

• Given a problem which can be solved by solving sub-

problems and combining their results together, how can

this concurrency be exploited by a parallel algorithm?

• Divide & Conquer is sometimes referred to as recursive

splitting

- but note that this is different from the Recursive Data pattern

Illustration
Problem

Subproblem Subproblem

Subproblem Subproblem Subproblem Subproblem

Subsolution Subsolution Subsolution Subsolution

Subsolution Subsolution

Solution

Sequential

2 tasks

4 tasks

2 tasks

Sequential

Split

Split Split

Solve Solve Solve Solve

Merge Merge

Merge

Divide & Conquer - Context

• Divide-and-conquer is used in many sequential algorithms

• Basic strategy:

- Split problem into smaller sub-problems

- Solve smaller sub-problems

• These sub-problems can often, in turn, be split.

- Merge solutions

• Parallelism comes from observation that sub-problems

are typically independent and can be solved concurrently

• Many problems expressed mathematically map well into

divide and conquer approaches

Divide & Conquer - Forces
• Obvious exploitable concurrency, but not always easy to

exploit efficiently

• Exploitable concurrency often varies throughout lifetime of

program (especially with recursion)

• Amdahl’s law states that the serial fraction constrains the

speed up – therefore the split and merge should be trivial.

• Problems are typically “created” and “solved” on different UEs

resulting in need for communication, and often movement of

data – if the number of tasks are too large then can the cost of

parallelism swamp speed up?

Divide & Conquer – Solution
• In serial, divide & conquer often implies recursive calls:

begin solve(problem)

if problem small enough

return solveBaseCase(problem)

else

split(problem, subproblem1, subproblem2)

solution1=solve(subproblem1)

solution2=solve(subproblem2)

return merge(solution1,solution2)

end solve

• Parallelise by making each call to solve a task

Divide & Conquer: Other considerations
• In serial, the base case is usually the smallest possible

subdivision and trivial to solve (e.g. sort one number)

• In parallel, size of the smallest subdivision should be chosen

for performance (and should be tuneable). Consider:

- communication / transfer of data between task and sub-task

- size of problem: e.g. stop splitting when subproblem fits in cache

• If subtask is on a separate PE then it might make sense to

duplicate some shared data

• If tasks are not independent, also use Shared Data pattern

• It might make sense to split into more than two subtasks

- e.g., if it’s easier to do one big merge than two smaller merges (which

can in turn depend on whether a merge can be parallelised)

Divide & Conquer – Implementation

• Take the tasks and solve these using

- Fork/Join pattern (see lecture and practical tomorrow), or

- Master/Worker pattern (see lecture and practical tomorrow)

• Fork/Join works well with regular problems

- One task splits the task in two and forks off a subtask (or subtasks)

to solve the problem, it waits for the subtasks to complete, then

joins with the subtasks to merge the solution

• Master/Worker works well with irregular problems

- Maintain a queue of tasks and a pool of UEs which take tasks from

the pool when they become free

- Slightly more complex but often gives better load balance if the

tasks have unpredictable work loads

Example: Mergesort

• Well known sorting algorithm based on divide and

conquer.

- There is a certain threshold, smaller than this then sort the array

sequentially (i.e. using some algorithm such as quicksort)

- In the split phase the array is split by partitioning it into two

subarrays of size N/2

- Apply mergesort procedure recursively to sort subarrays

- In merge phase the two (sorted) subarrays are combined

• The algorithm lends itself to parallelisation by doing the

two recursive mergesorts in parallel

Example: Mergesort

sort(int[] A) {

if (length(A) < THRESHOLD) {

return quicksort(A)

} else {

pivot=length(A)/2;

t=create new task {

B=sort(A(1:pivot))

}

C=sort(A(pivot:length(A))

wait for t to complete

return merge(B,C)

}

• The merge function is the same

as a sequential mergesort.

• The sketch of the algorithm is

very similar to the sequential

version.

• Carefully consider the efficiency

of merge and splitting of the

array.

• This is the subject of a later

practical

Recursive task parallelism

• This was called divide and conquer to represent the

general algorithmic pattern

• Recursive task parallelism would probably be a better

name nowadays

- As tasks spawning sub-tasks which themselves spawn sub-tasks

etc can be used in a variety of different algorithms

- These algorithms include divide and conquer, but the same ideas

we have discussed can potentially be applied to other algorithms

too

Tasks in OpenMP
#pragma omp task

{

……

}

#pragma omp task

{

#pragma omp task

{

……

}

……

}

#pragma omp task

{

……

}

#pragma omp taskwait

int x,y

#pragma omp task depend (out:x)

{

……

}

#pragma omp task depend (out:y)

{

……

}

#pragma omp task depend (in:x,y)

{

……

}

T1 T2

T3

x y

Conclusions

• Recursive data is pretty uncommon, but might be useful in

some situations

• Task parallelism where the tasks are linear and created

sequentially

• Divide and conquer when the tasks are created recursively

- This is when things start to get a bit more complex, because we are in a

situation where the number of tasks is non-deterministic, unstructured

and unpredictable

- But the interaction between tasks is predictable (i.e. parent-child)

