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Recursive Data – Problem

• Given a problem described by an algorithm which 

involves moving through a data structure in a seemingly 

sequential way, how can the algorithm be modified to 

expose parallelism?



Recursive Data – Context

• Many problems with recursive data structures can be 

solved with Divide & Conquer

- If this can be used, use it.

- Some other algorithms appear to have to move sequentially 

through the data structure and computing the result at each 

element.

• It’s often possible to re-cast a calculation so that instead 

of acting on each element in the data structure in turn, the 

operations are modified so as to expose parallelism

• Also referred to as Pointer Jumping or Recursive 

Doubling



Recursive Data – An Example

• Finding Roots in a Forest

- For each node compute the root of the tree containing that node

- Example from J. Já Já, An Introduction to Parallel Algorithms, 

Addison-Wesley (1992)

• Sequentially (DFS):

• O(N) execution time
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Recursive Data – An Example

• Naive parallelism where we could operate on subtrees in 

parallel but can not operate on all element concurrently 

because how can we find the root of a node without knowing 

its parent’s root

• But heavily reliant on the structure of the tree and still not 

great
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Recursive Data – An Example

• Let’s rethink the problem

• Step 1 – Compute the one hop (direct) parent of each 

node

• Here each element can be worked on concurrently (we 

can therefore have 14 tasks)
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Recursive Data – An Example

• Step 2 – Compute the parent’s parent (2 hops away) if 

applicable
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Recursive Data – An Example
• Step 3 – Compute the 3 hops away if applicable

• The algorithm contains much more work than the sequential 

one O(N log N) vs O(N) but runtime is now O(log N)

• By reshaping the algorithm we have exposed additional 

concurrency
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Recursive Data – Forces

• Recasting the problem to ensure that parts of the data 

structure can be operated on independently usually 

increases the total amount of work to be performed

- This is a trade-off that has to be considered

• Recasting the problem may be difficult

- In some cases may even be impossible

- Often results in less intuitive design

• Can be harder to understand and maintain

• Parallelism exposed may not be efficiently exploitable

- e.g. the result could be too fine-grained or require excessive 

communication



Recursive Data – Solution
• A general solution is difficult to express, but generally consists 

of

- Starting from a single element of the data structure

- Try to determine a means of finding the solution for that element of the 

data structure by a technique that does not involve waiting for the 

neighbouring data structure to return a full solution, e.g.,

• Iteratively follow pointers of neighbouring elements without actually waiting for 

them to have computed their ultimate result

• Build up a final result from smaller calculations that can be performed locally

• Features of the solution

- Data decomposition: Usually one element of data structure per UE

- Structure: Typically a loop of iterations; operate simultaneously on every 

element once each iteration. Typical operations include “replace each 

element’s successor with its successor's successor.”

- Synchronisation: Typically at end of each iteration (manual or implied)



Example: Partial sums of a linked list

k=pid()

temp[k]=next[k]

x0 x1 x2 x3 x4 x5 x6 x7

x0:x0 x1:x1 x2:x2 x3:x3 x4:x4 x5:x5 x6:x6 x7:x7

x0:x0 x0:x1 x0:x2 x0:x3 x0:x4 x0:x5 x0:x6 x0:x7

x0:x0 x0:x1 x1:x2 x2:x3 x3:x4 x4:x5 x5:x6 x6:x7

x0:x0 x0:x1 x0:x2 x0:x3 x1:x4 x2:x5 x3:x6 x4:x7

while temp[k] != null {

x[temp[k]]=x[k]+x[temp[k]]

temp[k]=temp[temp[k]]   

}



A word of warning with this pattern…..

• As the work required goes from O(N) to O(N log N) we can get 

caught out by this if we don’t have enough UEs

- i.e. N=1024, time per step is t. Therefore sequentially it would take 1024 

* t . 

- Total work with this pattern is O(N log N) = 1024 * 10 * t = 10240*t

- With 1024 UEs, the total runtime is 10*t

- But, if we only have 2 UEs, then the runtime is 5120*t

- In this example the break even point is 10 UEs, therefore carefully 

consider if the pattern is worth applying

• Potential best scaling can sometimes be limited, but often 

preferable to running in serial
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“Task Parallelism”

• Here we focus on the Task Parallelism Pattern

• We’re looking at a particular Problem in a particular 

Context and its Solution

• The phrase is also used in other contexts (with varying 

but related meanings)

- A common differentiation is between “Task Parallelism” and “Data 

Parallelism”

• a more general definition than encompassed by this pattern



Task Parallelism – Problem

• When a problem is naturally decomposed into a collection 

of tasks that can execute concurrently, how can this 

concurrency be exploited efficiently?



Task Parallelism - Context
• All parallel algorithms can ultimately be broken down into 

concurrent tasks

- There can be more than one way to do this

• This pattern is about problems that are best dealt with by an 

algorithm that is focussed on these tasks and their 

interactions.

- The design is based directly on the tasks

• Arguably this pattern is defined best by what it does not 

include, namely:

- Geometric Decomposition (organised by data), Pipeline (organised by 

the flow of data)

• Tasks can be completely independent, or there can be 

interdependencies



Examples
• Molecular Dynamics 

Simulation

- Often actually uses more than 

one pattern, but conceptually

• Moving n particles: O(n) tasks

• Calculating the forces between 

particles: O(n2) tasks

• Computer game

- User control

- Game physics

- Render

- AI

- Music

- Sound effects



Task Parallelism - Forces

• The same aspects of the problem that influence the 

pattern to consider are also relevant to how concurrency 

can be best exploited:

- Efficiency

- Simplicity

- Portability

- Scalability

• An important consideration here is load balance

• Correct management of interdependencies



Task Parallelism – Solution

• Consider each of the following in turn and then together:

1. Tasks

2. Dependencies

3. Schedule

• How tasks are assigned to processes, threads

- Processes & threads referred to as Units of 

Execution (UEs)

• Note that this is still one step away from how these 

are run on hardware

-Hardware elements referred to as Processing 

Elements (PEs)



Tasks

• There should be at least as many tasks as UEs

- Preferably many more

• Allows more flexibility in scheduling and potentially better load balance

• The computation associated with each task must be large 

enough to offset overheads like task management and 

dependencies between tasks

• If your design does not meet these criteria, then can you split 

in a way that results in more, computation rich, tasks?



Dependencies
• Ordering constrains

- Task groups must execute in a specific order i.e. we must set the 

boundary conditions & initial values before computing the initial residual.

- Could think of the problem as a sequential composition of task parallel 

groups i.e. 

(boundary conditions and initial values) ; initial residual ; 

(solution residual and jacobi iteration)

• Shared data dependencies

- Data shared between tasks, ranging from none (embarrassingly parallel) 

to lots (tightly coupled.)

- Our practical example isn’t too bad, but you do need to exchange 

neighbouring data



Categorising dependencies
• Removable dependencies

- Can remove by code transformation

- E.g. transforming iterative expressions to closed form

int ii=0;jj=0;

for (int i=0;i<N;i++) {

ii++;

d[ii]=time_consuming_work(ii);

jj=jj+i;

a[jj]=large_calculation(jj);

}

for (int i=0;i<N;i++) {

d[i]=time_consuming_work(i);

a[(i*i+i)/2]=large_calculation((i*i+i)/2);

}

• ii and jj create a 

dependency between 

tasks

• But ii = i

• And jj is the sum 

of 0 through i



Categorising dependencies

• Separable dependencies

- When dependencies involve accumulation into a shared data 

structure

- Replicate some data at the start of a task: replicated data

- execute task

- recombine replicated data

• often a reduction operation

- reductions supported directly in, e.g., MPI, OpenMP

• Other dependencies

- If shared data can not be pulled out of the tasks and is read/write 

then it is difficult

- Apply Shared Data pattern



Scheduling
• Closely related to the Implementation 

Strategy

• Scheduling is critical to load balancing 

- Schedules can be static or dynamic

• Static scheduling

- useful for regular, predictable workloads

- can also be useful for more “random” loads by 

using round-robin allocation

• Dynamic scheduling can be done with, 

e.g. task queues, work stealing

- Helpful when not all tasks are known in 

advance

Poor load balancing

Better load balancing



Task Parallelism: Languages & 

Architectures

• Task Parallelism can be done with nearly all parallel 

languages

- The decision between, say, OpenMP and MPI is more likely to be 

based on the chosen Implementation Strategy

• Explicitly data-parallel languages such as HPF are an 

exception, although (contrived) solutions exist to use HPF

- External libraries

- Mixed-mode with MPI

• Often map well onto loop parallelism, master/worker or 

SPMD implementation strategies.



Example: Dinosaurs



Example: Star Extractor

1 134.0376    292.1414 …… 0.0000

2 239.6541    192.4977 …… 0.0014

3 307.1008    305.6235 …… 0.5181

4 319.4861    263.6567 …… 1.0000

5 263.3937    58.7983 …… 0.7457

6 171.7773    120.8677 …… 0.3741

7 16.1523     31.4022 …… 0.6030

0.0000

0.0014

0.3741 1.0000

0.7457

0.3741

0.6030

• Each input image is run as a concurrent, 

independent task

- Identifying objects and classifier neural network

• The classifier neural network can operate 

on each object as an independent task
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Divide & Conquer - Problem

• Given a problem which can be solved by solving sub-

problems and combining their results together, how can 

this concurrency be exploited by a parallel algorithm?

• Divide & Conquer is sometimes referred to as recursive 

splitting

- but note that this is different from the Recursive Data pattern



Illustration
Problem

Subproblem Subproblem

Subproblem Subproblem Subproblem Subproblem

Subsolution Subsolution Subsolution Subsolution

Subsolution Subsolution

Solution

Sequential

2 tasks

4 tasks

2 tasks

Sequential

Split

Split Split

Solve Solve Solve Solve

Merge Merge

Merge



Divide & Conquer - Context

• Divide-and-conquer is used in many sequential algorithms

• Basic strategy:

- Split problem into smaller sub-problems

- Solve smaller sub-problems

• These sub-problems can often, in turn, be split. 

- Merge solutions

• Parallelism comes from observation that sub-problems 

are typically independent and can be solved concurrently

• Many problems expressed mathematically map well into 

divide and conquer approaches



Divide & Conquer - Forces
• Obvious exploitable concurrency, but not always easy to 

exploit efficiently

• Exploitable concurrency often varies throughout lifetime of 

program (especially with recursion)

• Amdahl’s law states that the serial fraction constrains the 

speed up – therefore the split and merge should be trivial.

• Problems are typically “created” and “solved” on different UEs 

resulting in need for communication, and often movement of 

data – if the number of tasks are too large then can the cost of 

parallelism swamp speed up?



Divide & Conquer – Solution
• In serial, divide & conquer often implies recursive calls:

begin solve(problem)

if problem small enough

return solveBaseCase(problem)

else

split(problem, subproblem1, subproblem2)

solution1=solve(subproblem1)

solution2=solve(subproblem2)

return merge(solution1,solution2)

end solve

• Parallelise by making each call to solve a task 



Divide & Conquer: Other considerations
• In serial, the base case is usually the smallest possible 

subdivision and trivial to solve (e.g. sort one number)

• In parallel, size of the smallest subdivision should be chosen 

for performance (and should be tuneable). Consider:

- communication / transfer of data between task and sub-task

- size of problem: e.g. stop splitting when subproblem fits in cache

• If subtask is on a separate PE then it might make sense to 

duplicate some shared data

• If tasks are not independent, also use Shared Data pattern

• It might make sense to split into more than two subtasks

- e.g., if it’s easier to do one big merge than two smaller merges (which 

can in turn depend on whether a merge can be parallelised)



Divide & Conquer – Implementation

• Take the tasks and solve these using

- Fork/Join pattern (see lecture and practical tomorrow), or

- Master/Worker pattern (see lecture and practical tomorrow)

• Fork/Join works well with regular problems 

- One task splits the task in two and forks off a subtask (or subtasks) 

to solve the problem, it waits for the subtasks to complete, then 

joins with the subtasks to merge the solution

• Master/Worker works well with irregular problems

- Maintain a queue of tasks and a pool of UEs which take tasks from 

the pool when they become free

- Slightly more complex but often gives better load balance if the 

tasks have unpredictable work loads



Example: Mergesort

• Well known sorting algorithm based on divide and 

conquer.

- There is a certain threshold, smaller than this then sort the array 

sequentially (i.e. using some algorithm such as quicksort)

- In the split phase the array is split by partitioning it into two 

subarrays of size N/2

- Apply mergesort procedure recursively to sort subarrays

- In merge phase the two (sorted) subarrays are combined

• The algorithm lends itself to parallelisation by doing the 

two recursive mergesorts in parallel



Example: Mergesort

sort(int[] A) {

if (length(A) < THRESHOLD) {

return quicksort(A)

} else {

pivot=length(A)/2;

t=create new task {

B=sort(A(1:pivot))

}

C=sort(A(pivot:length(A))

wait for t to complete

return merge(B,C)

}

• The merge function is the same 

as a sequential mergesort.

• The sketch of the algorithm is 

very similar to the sequential 

version.

• Carefully consider the efficiency 

of merge and splitting of the 

array.

• This is the subject of a later 

practical



Recursive task parallelism

• This was called divide and conquer to represent the 

general algorithmic pattern

• Recursive task parallelism would probably be a better 

name nowadays

- As tasks spawning sub-tasks which themselves spawn sub-tasks 

etc can be used in a variety of different algorithms

- These algorithms include divide and conquer, but the same ideas 

we have discussed can potentially be applied to other algorithms 

too



Tasks in OpenMP
#pragma omp task

{

……

}

#pragma omp task

{

#pragma omp task

{

……

}

……

}

#pragma omp task

{

……

}

#pragma omp taskwait

int x,y

#pragma omp task depend (out:x)

{

……

}

#pragma omp task depend (out:y)

{

……

}

#pragma omp task depend (in:x,y)

{

……

}

T1 T2

T3

x y



Conclusions

• Recursive data is pretty uncommon, but might be useful in 

some situations

• Task parallelism where the tasks are linear and created 

sequentially

• Divide and conquer when the tasks are created recursively

- This is when things start to get a bit more complex, because we are in a 

situation where the number of tasks is non-deterministic, unstructured 

and unpredictable

- But the interaction between tasks is predictable (i.e. parent-child)


