
ARCHER Single Node
Optimisation

Profiling

What is profiling?

• Analysing your code to find out the proportion of
execution time spent in different routines.

• Essential to know this if we are going to target
optimisation.

• No point optimising routines that don’t significantly
contribute to the overall execution time.
- can just make your code less readable/maintainable

2

Code profiling

• Code profiling is the first step for anyone interested in
performance optimisation

• Profiling works by instrumenting code at compile time
- Thus it’s (usually) controlled by compiler flags
- Can reduce performance

• Standard profiles return data on:
- Number of function calls
- Amount of time spent in sections of code

• Also tools that will return hardware specific data
- Cache misses, TLB misses, cache re-use, flop rate, etc…
- Useful for in-depth performance optimisation

3

Sampling and tracing

• Many profilers work by sampling the program counter at
regular intervals (normally 100 times per second).
- low overhead, little effect on execution time

• Builds a statistical picture of which routines the code is
spending time in.
- if the run time is too small (< ~10 seconds) there aren’t enough

samples for good statistics

• Tracing can get more detailed information by recording
some data (e.g. time stamp) at entry/exit to functions
- higher overhead, more effect on runtime
- unrestrained use can result in huge output files

4

Standard Unix profilers

• Standard Unix profilers are prof and gprof

• Many other profiling tools use same formats
• Usual compiler flags are -p and -pg:

- ftn -p mycode.F90 -o myprog for prof

- cc -pg mycode.c -o myprog for gprof

• When code is run it produces instrumentation log
- mon.out for prof

- gmon.out for gprof

• Then run prof/gprof on your executable program
- eg. gprof myprog (not gprof gmon.out)

5

Standard profilers

• prof myprog reads mon.out and produces this:
%Time Seconds Cumsecs #Calls msec/call Name

32.4 0.71 0.71 14 50.7 relax_

28.3 0.62 1.33 14 44.3 resid_

11.4 0.25 1.58 3 83. __f90_close

5.9 0.13 1.71 1629419 0.0001 _mcount

5.0 0.11 1.82 339044 0.0003 __f90_slr_i4

5.0 0.11 1.93 167045 0.0007
__inrange_single

2.7 0.06 1.99 507 0.12 _read

2.7 0.06 2.05 1 60. MAIN_

6

Standard profilers

• gprof myprog reads gmon.out and produces something
very similar

• gprof also produces a program calltree sorted by inclusive
times

• Both profilers list all routines, including obscure system ones
- Of note: mcount(), _mcount(), moncontrol(), _moncontrol()
monitor() and _monitor() are all overheads of the profiling
implementation itself

- _mcount() is called every time your code calls a function; if it’s high in
the profile, it can indicate high function-call overhead

- gprof assumes calls to a routine from different parents take the same
amount of time – may not be true

7

The Golden Rules of profiling
- Profile your code

• The compiler/runtime will NOT do all the optimisation for you.

- Profile your code yourself
• Don't believe what anyone tells you. They're wrong.

- Profile on the hardware you want to run on
• Don't profile on your laptop if you plan to run on ARCHER.

- Profile your code running the full-sized problem
• The profile will almost certainly be qualitatively different for a test case.

- Keep profiling your code as you optimise
• Concentrate your efforts on the thing that slows your code down.
• This will change as you optimise.
• So keep on profiling.

8

CrayPAT

• Can do both statistic sampling and function/loop level
tracing.

Recommended usage:

1. Build and instrument code

2. Run code and get statistic profile

3. Re-instrument based on profile

4. Re-run code to get more detailed tracing

9

Example with CrayPAT (1/2)

• Load performance tools software
module load perftools-base
module load perftools

• Re-build application (keep .o files)
make clean
make

• Instrument application for automatic profiling analysis
- You should get an instrumented program a.out+pat

pat_build –O apa a.out

• Run the instrumented application (...+pat) to get top time
consuming routines

- You should get a performance file (“<sdatafile>.xf”) or
multiple files in a directory <sdatadir>

10

Example with CrayPAT (2/2)
• Generate text report and an .apa instrumentation file

pat_report [<sdatafile>.xf | <sdatadir>]

- Inspect the .apa file and sampling report whether additional
instrumentation is needed

• See especially sites “Libraries to trace” and “HWPC group to collect”

• Instrument application for further analysis (a.out+apa)
pat_build –O <apafile>.apa

• Run application (...+apa)
• Generate text report and visualization file (.ap2)

pat_report –o my_text_report.txt <data>

• View report in text and/or with Cray Apprentice2

app2 <datafile>.ap2

11

Finding single-core hotspots

• Remember: pay attention only to user routines that consume
significant portion of the total time

• View the key hardware counters, for example
- L1 and L2 cache metrics

- use of vector (SSE/AVX) instructions

12

• CrayPAT has mechanisms for finding “the” hotspot in a
routine (e.g. in case the routine contains several and/or
long loops)
- CrayPAT API

• Possibility to give labels to “PAT regions”

- Loop statistics (works only with Cray compiler)
• Compile & link with CCE using -h profile_generate

• pat_report will generate loop statistics if the flag is enabled

13

USER / remap_
--

Time% 25.2%
Time 15.801180 secs
Imb. Time 2.582609 secs
Imb. Time% 14.7%
Calls 0.026M/sec 460,800.0 calls
CPU_CLK_UNHALTED:THREAD_P 77,964,376,624
CPU_CLK_UNHALTED:REF_P 2,689,572,161
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 20,626,569
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 17,745,058
L1D:REPLACEMENT 2,753,483,367
L2_RQSTS:ALL_DEMAND_DATA_RD 1,912,839,218
L2_RQSTS:DEMAND_DATA_RD_HIT 1,757,495,428
FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 1,597
FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE 1,556,036,610
FP_COMP_OPS_EXE:X87 1,878,388,524
FP_COMP_OPS_EXE:SSE_PACKED_SINGLE 302,976,589
SIMD_FP_256:PACKED_SINGLE 5,003,127,724
User time (approx) 17.476 secs 47,202,147,918 cycles 100.0% Time
CPU_CLK 2.90GHz
HW FP Ops / User time 2,556.183M/sec 44,671,354,883 ops 11.8%peak(DP)
Total SP ops 2,448.698M/sec 42,792,964,761 ops
Total DP ops 107.485M/sec 1,878,390,122 ops
MFLOPS (aggregate) 61,348.39M/sec
D2 cache hit,miss ratio 94.4% hits 5.6% misses
D2 to D1 bandwidth 6,680.690MiB/sec 122,421,709,963 bytes
Average Time per Call 0.000034 secs
CrayPat Overhead : Time 11.4%

Flat profile data

HW counter
values

Derived
metrics

14

Hardware performance counters
• CrayPAT can interface with Cray XC30's HWPCs

- Gives extra information on how hardware is behaving

- Very useful for understanding (& optimising) application performance

• Provides information on
- hardware features, e.g. caches, vectorisation and memory bandwidth

• Available on per-program and per-function basis
- Per-function information only available through tracing

• Number of simultaneous counters limited by hardware
- 4 counters available with Intel Ivybridge processors

- If you need more, you'll need multiple runs

• Most counters accessed through the PAPI interface
- Either native counters or derived metrics constructed from these

15

Hardware counters selection
• HWPCs collected using CrayPAT

- Compile and instrument code for profiling as before

• Set PAT_RT_PERFCTR environment variable at runtime
- e.g. in the job script

• Hardware counter events are not collected by default (except with APA)

• export PAT_RT_PERFCTR=...
- either a list of named PAPI counters

- or <set number> = a pre-defined (and useful) set of counters
• recommended way to use HWPCs

• there are 15 groups to choose from
- To see them:

• pat_help -> counters -> ivybridge –> groups
• man hwpc
• more ${CRAYPAT_ROOT}/share/CounterGroups.intel_fam6mod62

Technical term for
Ivybridge

16

Predefined Ivybridge HW Counter Groups

0: D1 with instruction counts

1: Summary -- FP and cache
metrics

2: D1, D2, L3 Metrics

6: Micro-op queue stalls

7: Back end stalls

8: Instructions and branches

9: Instruction cache

10: Cache Hierarchy

11: Floating point operations dispatched

12: AVX floating point operations

13: SSE and AVX floating point
operations SP

14: SSE and AVX floating point
operations DP

19: Prefetchs

23: FP and cache metrics (same as 1)

Default is number 1 with CrayPAT APA procedure

17

USER / sweepy_
--

Time% 14.6%
Time 8.738150 secs
Imb. Time 3.077320 secs
Imb. Time% 27.2%
Calls 11.547 /sec 100.0 calls
CPU_CLK_UNHALTED:THREAD_P 92,754,888,918
CPU_CLK_UNHALTED:REF_P 2,759,876,135
L1D:REPLACEMENT 1,813,741,166
L2_RQSTS:ALL_DEMAND_DATA_RD 1,891,459,700
L2_RQSTS:DEMAND_DATA_RD_HIT 1,644,133,800
LLC_MISSES 98,952,928
LLC_REFERENCES 690,626,471
User time (approx) 8.660 secs 23,390,899,520 cycles 100.0% Time
CPU_CLK 3.36GHz
D2 cache hit,miss ratio 86.4% hits 13.6% misses
L3 cache hit,miss ratio 85.7% hits 14.3% misses
D2 to D1 bandwidth 13,330.757MiB/sec 121,053,420,792 bytes
Average Time per Call 0.087381 secs
CrayPat Overhead : Time 0.0% ….

Example: Group 2

18

Interpreting the performance numbers

• Performance numbers are an average over all ranks
- explains non-integer values

• This does not always make sense
- e.g. if ranks are not all doing the same thing:

• Master-slave schemes
• MPMD apruns combining multiple, different programs

• Want them to only process data for certain ranks
- pat_report –sfilter_input='condition' ...
- condition should be an expression involving pe, e.g.

• pe<1024 for the first 1024 ranks only
• pe%2==0 for every second rank

19

OpenMP data collection and reporting
• Give finer-grained profiling of threaded routines

- Measure overhead incurred entering and leaving
• Parallel regions

- #pragma omp parallel

• Work-sharing constructs within parallel regions
- #pragma omp for

• Timings and other data now shown per-thread
- rather than per-rank

• OpenMP tracing enabled with pat_build -gomp ...
- CCE: insert tracing points around parallel regions automatically
- Intel, Gnu: need to use CrayPAT API manually

20

OpenMP data collection and reporting

• Load imbalance for hybrid MPI/OpenMP programs
- now calculated across all threads in all ranks

- imbalances for MPI and OpenMP combined
• Can choose to see imbalance in each programming model separately

• See next slide for details

• Data displayed by default in pat_report
- no additional options needed

- Report focuses on where program is spending its time

- Assumes all requested resources should be used
• you may have reasons not to want to do this, of course

21

Memory usage

• Knowing how much memory each rank uses is important:
- What is the minimum number of cores I can run this problem on?

• given there is 64GB (~62GB usable) of memory per node (24 cores)

- Does memory usage scale well in the application?

- Is memory usage balanced across the ranks in the application?

- Is my application spending too much time allocating and freeing?

22

Heap statistics
Notes for table 5:

Table option:
-O heap_hiwater

Options implied by table option:
-d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5: Heap Stats during Main Program

Tracked | Total | Total | Tracked | Tracked |PE[mmm]
Heap | Allocs | Frees | Objects | MBytes |

HiWater | | | Not | Not |
MBytes | | | Freed | Freed |

9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

Memory per rank
~62GB usable memory per node

Too many allocs/frees?
Would show up as ETC
time in CrayPAT report

Memory leaks
Not usually a problem in HPC

23

Summary
• Profiling is essential to identify performance bottlenecks

- even at single core level

• CrayPAT has some very useful extra features
- can pinpoint and characterise the hotspot loops (not just routines)

- hardware performance counters give extra insight into performance

- well-integrated view of hybrid programming models
• most commonly MPI/OpenMP

• also CAF, UPC, SHMEM, pthreads, OpenACC, CUDA

- information on memory usage

• And remember the Golden Rules
- including the one about not believing what anyone tells you

24

