
Advanced OpenMP
Exercise Notes

Getting started

Logging on to Cirrus
You should have been given a guest account ID – referred to generically here as
trainXXX and password.
These credentials can be used to access Cirrus using

ssh -X trainXXX@login.cirrus.ac.uk

or with the SSH client of your choice (-X ensures that graphics are routed back to
your desktop). Once you have successfully logged in you will be presented with an
interactive command prompt.

Copy and extract the exercise files
Copy the tar file and unpack it with the commands

cp /home/shared/advomp.tar .
tar xvf advomp.tar

Compiling using OpenMP
The Intel compilers (icc/ifort) are available on Cirrus. To access them type

module load intel-compilers-17

To compile an OpenMP code, simply add the flag -qopenmp
You can also use the GNU compilers (gcc/gfortran) instead: to access an up-to-date
version that supports the latest OpenMP features, type

module load gcc

For the GNU compilers the OpenMP flag is -fopenmp

1



Job Submission
You can run OpenMP codes on the login nodes in the usual way (set OMP NUM THREADS
and execute).
For accurate timings, you should submit a batch job as follows:

qsub -q <resnum> scriptfile.pbs

where resnum is the reservation number for the session.
You can monitor your jobs status with the qstat command, and jobs can be deleted
with qdel .

Exercise 1: Mandelbrot with and without worksharing
First, remind yourself how to write some OpenMP by parallelising the code in
AdvOMP/*/Mandelbrot, where * is either C or Fortran90, using parallel and
loop constructs. Run the code using the script supplied to measure the performance on
1, 2, 4, 8, 12 and 24 threads.
Now try writing a version which does not use worksharing loop constructs or reduction
variables.

Exercise 2: Mandelbrot with nesting, collapse and tasks
Go back to the worksharing loop version of the Mandelbrot example. Try exploiting the
parallelism in both outer loops using first nested parallel regions, and then the collapse
clause.
Now rewrite this example using OpenMP tasks. To begin with, make the computation
of each point a task, and use one thread only to generate the tasks. Once this is working,
measure the performance. Now modify your code so that it treats each row of points
as a task. Modify your code again, so that all threads generate tasks. Which version
performs best? Is the performance better or worse that using a loop directive? Note that
reduction variables cannot be accessed in tasks, so you will need to find an alternative
solution.

Exercise 3: Cache Coherency
The code for this exercise is in AdvOMP/*/Coherency/ where * is either C or
Fortran90.
First of all, take a look at the code coherency.[f90|c] and work out what it is
doing. Use the Makefile to compile the code. Execute it using two threads by submit-
ting the supplied batch script with the command qsub -q <resnum> coh.pbs
where resnum is the reservation code for the session. Try to explain the observed
results, and use them to compute the cost of a coherency miss.

2



Extra exercise
Try changing the values of COREA and COREB in the script so that the code runs on
different pairs of cores.

Exercise 4: NUMA effects
The example code can be found in AdvOMP/*/NUMA/. This is the well-known
STREAMS benchmark for measuring memory bandwidth. Use the Makefile to com-
pile the code, and run it using different numbers of threads using the supplied batch
script.
Does the bandwidth scale linearly with processors? Now try removing the OpenMP
loop directive from the initialisation of the arrays. How does the performance change?
You can also try using the ”wrong” schedule for the loop, or selecting different sets of
cores to run on.

Extra exercise
Try reducing the array size N by a factor of 100 or 1000 (and increase the repetition
count NTIMES by the same amount).

Exercise 5: Molecular Dynamics performance
The AdvOMP/*/MolDyn/ directory contains a parallel version of a simple molecular
dynamics code. Run the code using the script supplied with the script supplied to
obtain a VTune profile. This should create a directory called r000hs which contains
a .amplxe file (among other things). Subsequent runs create directories r001hs etc.
To examine the profile, load the VTune module with

module load intel-vtune-17

and start the VTune GUI with the amplxe-gui command. Click on ”Open Result”,
navigate to the r000hs directory and open the .amplxe file.
Try changing the loop schedule to improve load balance and profile again. Now modify
the code so that it uses atomic update instead of CRITICAL — does the performance
improve, and how does the profile change?

Exercise 6: OpenMP + MPI
In this exercise, we will use a 1-D cellular automaton example which models the flow
of cars on a road in a very simple way, and implement a mixed OpenMP/MPI version.
A working MPI implementation can be found in AdvOMP/*/Traffic.
Before compiling the code, load the MPI module with

module load mpt

3



Add parallel loop directives to the two loops inside the main iteration loop: the one
which applies the cellular automaton rule, and the one which copies the new state of
the road to the old one.
Use the script provides to run different combinations of threads/processes on the same
number of processors (e.g. 36 processes and 1 threads, 18 processes and 2 threads,
etc.). Which combination gives the best performance? How does this compare to the
MPI only version?

Extra exercise
Try implementing the code in different hybrid styles (Funneled, Serialized and Multi-
ple)

Exercise 7: Target offload
This exercise is only available in C: apologies to Fortran programmers! The source
code is in AdvOMP/C/Laplace. To build the code, first load the clang compiler on
Cirrus with

module load clang

Then type make to compile the code.
The supplied code is parallelised for the CPU. You may wish to keep a copy of this
version, so you can use it to measure the performance on the CPU. Add the appropriate
directives to offload the two parallel loops to the GPU instead. Use the supplied batch
script to run on the GPU nodes. Note that the error file should contain output from
the nvprof profiling tool. Try using target data directives to reduce the amount of data
movement - does the performance improve?

4


