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Fortran array syntax

• MPI derived types enable strided data to be sent/received

- no explicit copy in/out required

• For Fortran

- why not use Fortran array syntax?

• Some subtleties for non-blocking operations

- see notes on Learn
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Array Layout in Memory

• Data is contiguous in memory

- different conventions in C and Fortran

- for statically allocated C arrays x == &x[0][0]
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C: x[4][4] F: x(4,4)

1 5 132 6 10 143 7 11 154 8 12 169

C: x[16] F: x(16)
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Aside: Dynamic Arrays in C

• Data non-contiguous, and x != &x[0][0]

- cannot use regular templates such as vector datatypes

- cannot pass x to any MPI routine
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float **x = (float **) malloc(4, sizeof(float *));

for (i=0; i < 4; i++)

{

x[i] = (float *) malloc(4, sizeof(float));

}
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x

x[0]x[1] x[3]x[2]



Arralloc

• Data is now contiguous, but still x != &x[0][0]

- can now use regular template such as vector datatype

- must pass &x[0][0] (start of contiguous data) to MPI routines

- see MPP-arralloc.tar for example of use in practice

• Will illustrate all calls using &x[i][j] syntax 

- correct for both static and (contiguously allocated) dynamic arrays
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float **x = (float **) arralloc(sizeof(float), 2, 4, 4);

/* do some work */

free((void *) x);

1 5 132 6 103 7 114 8 129x x[0]x[1] x[3]x[2]


