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Virtual Topologies

• Convenient process naming.

• Naming scheme to fit the communication pattern.

• Simplifies writing of code.

• Can allow MPI to optimise communications.
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How to use a Virtual Topology

• Creating a topology produces a new communicator.

• MPI provides “mapping functions”.

• Mapping functions compute processor ranks, based on 

the topology naming scheme.
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Example

A 2-dimensional Cylinder
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Topology types 

• Cartesian topologies

- each process is “connected” to its neighbours in a virtual grid.

• boundaries can be cyclic, or not.

• optionally re-order ranks to allow MPI implementation to optimise for 

underlying network interconnectivity.

- processes are identified by cartesian coordinates.

• Graph topologies

- general graphs

- not covered here
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Creating a Cartesian Virtual Topology

• C:

int MPI_Cart_create(MPI_Comm comm_old, 

int ndims, int *dims, int *periods,

int reorder, MPI_Comm *comm_cart)

• Fortran:

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, 

PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER
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Balanced Processor Distribution

• C:

int MPI_Dims_create( int nnodes, int ndims, 

int *dims )

• Fortran:

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

INTEGER NNODES, NDIMS, DIMS(*), IERROR
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MPI_Dims_create

• Call tries to set dimensions as close to each other as 

possible

• Non zero values in dims sets the number of processors 

required in that direction

- WARNING: make sure dims is set to zero before the call
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dims before call function call dims on return

(0, 0) MPI_DIMS_CREATE( 6, 2, dims) (3, 2)

(0, 0) MPI_DIMS_CREATE( 7, 2, dims) (7, 1)

(0, 3, 0) MPI_DIMS_CREATE( 6, 3, dims) (2, 3, 1)

(0, 3, 0) MPI_DIMS_CREATE( 7, 3, dims) erroneous call



Cartesian Mapping Functions

Mapping process grid coordinates to ranks

• C:

int MPI_Cart_rank( MPI_Comm comm, 

int *coords, int *rank)

• Fortran:

MPI_CART_RANK (COMM, COORDS, RANK, IERROR)

INTEGER COMM, COORDS(*), RANK, IERROR
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Cartesian Mapping Functions 

Mapping ranks to process grid coordinates

• C:

int MPI_Cart_coords(MPI_Comm comm, int rank, 

int maxdims, int *coords)

• Fortran:

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS,IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR
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Cartesian Mapping Functions

Computing ranks of my neighbouring processes

Following conventions of MPI_SendRecv

• C:
int MPI_Cart_shift(MPI_Comm comm, 

int direction, int disp, 

int *rank_source, int *rank_dest)

• Fortran:
MPI_CART_SHIFT(COMM, DIRECTION, DISP, 

RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP,

RANK_SOURCE, RANK_DEST, IERROR
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Non-existent ranks

• What if you ask for the rank of a non-existent process?

- or look off the edge of a non-periodic grid?

• MPI returns a NULL processor

- rank is MPI_PROC_NULL

• MPI_PROC_NULL is a black hole

- sends and receives complete immediately

- send buffer disappears, receive buffer isn’t touched

- like UNIX /dev/null
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Cartesian Partitioning

• Cut a grid up into “slices”.

• A new communicator is produced for each slice.

• Each slice can then perform its own collective 

communications.

• MPI_Cart_sub and MPI_CART_SUB generate new 

communicators for the slices.

- Use array to specify which dimensions should be retained in the 

new communicator.
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Partitioning with MPI_CART_SUB

• C:
int MPI_Cart_sub ( MPI_Comm comm, 

int *remain_dims, 

MPI_Comm *newcomm)

• Fortran:
MPI_CART_SUB (COMM, REMAIN_DIMS,     

NEWCOMM,IERROR)

INTEGER  COMM, NEWCOMM, IERROR

LOGICAL REMAIN_DIMS(*)
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Exercise

• See Exercise 6 on the sheet

• Rewrite the exercise passing numbers round the ring 

using a one-dimensional ring topology.
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