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Overview

• This lecture will cover

- message passing model

- SPMD

- communication modes

- collective communications
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Message Passing Model

• The message passing model is based on the notion of 

processes

- can think of a process as an instance of a running program, 

together with the program’s data

• In the message passing model, parallelism is achieved by 

having many processes co-operate on the same task

• Each process has access only to its own data

- ie all variables are private

• Processes communicate with each other by sending and 

receiving messages

- typically library calls from a conventional sequential language
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SPMD

• Most message passing programs use the Single-

Program-Multiple-Data (SPMD) model

• All processes run (their own copy of) the same program

• Each process has a separate copy of the data

• To make this useful, each process has a unique identifier

• Processes can follow different control paths through the 

program, depending on their process ID 

• Usually run one process per processor / core

11



Emulating General Message Passing (C)

main (int argc, char **argv)

{

if (controller_process)

{

Controller( /* Arguments */ );

}

else

{

Worker    ( /* Arguments */ );

}

}
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Emulating General Message Passing (F)

PROGRAM SPMD

IF (controller_process) THEN

CALL CONTROLLER ( ! Arguments ! )

ELSE

CALL WORKER     ( ! Arguments ! )

ENDIF

END PROGRAM SPMD
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Messages

• A message transfers a number of data items of a certain 

type from the memory of one process to the memory of 

another process

• A message typically contains

- the ID of the sending processor

- the ID of the receiving processor

- the type of the data items

- the number of data items

- the data itself

- a message type identifier 
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Communication modes

• Sending a message can either be synchronous or 

asynchronous

• A synchronous send is not completed until the message 

has started to be received 

• An asynchronous send completes as soon as the 

message has gone

• Receives are usually synchronous - the receiving process 

must wait until the message arrives
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Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.
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Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has 

been received.

17



Point-to-Point Communications

• We have considered two processes

- one sender

- one receiver

• This is called point-to-point communication

- simplest form of message passing

- relies on matching send and receive

• Close analogy to sending personal emails
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Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between 

groups of processes is required

• Can be built from simple messages, but often 

implemented separately, for efficiency
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Barrier

• Global synchronisation
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Broadcast

• One to all communication
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Broadcast

• From one process to all others

22

8

8 8

8

8

8



Scatter

• Information scattered to many processes
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Gather

• Information gathered onto one process
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Reduction Operations

• Combine data from several processes to form a single 

result
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Reduction

• Form a global sum, product, max, min, etc.
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Launching a Message-Passing Program

• Write a single piece of source code
• with calls to message-passing functions such as send / receive

• Compile with a standard compiler and link to a message-
passing library provided for you
• both open-source and vendor-supplied libraries exist

• Run multiple copies of same executable on parallel machine
• each copy is a separate process

• each has its own private data completely distinct from others

• each copy can be at a completely different line in the program

• Running is usually done via a launcher program
• “please run N copies of my executable called program.exe”
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Issues

• Sends and receives must match

- danger of deadlock

- program will stall (forever!)

• Possible to write very complicated programs, but …

- most scientific codes have a simple structure

- often results in simple communications patterns

• Use collective communications where possible

- may be implemented in efficient ways
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Summary (i)

• Messages are the only form of communication

- all communication is therefore explicit

• Most systems use the SPMD model

- all processes run exactly the same code

- each has a unique ID

- processes can take different branches in the same codes

• Basic communications form is point-to-point

- collective communications implement more complicated patterns 

that often occur in many codes 
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Summary (ii)
• Message-Passing is a programming model

- that is implemented by MPI

- the Message-Passing Interface is a library of function/subroutine calls

• Essential to understand the basic concepts

- private variables

- explicit communications

- SPMD

• Major difficulty is understanding the Message-Passing model

- a very different model to sequential programming

30

if (x < 0)

print(“Error”);

exit;


