
Stephen Booth

EPCC

Advanced Parallel

Programming

MPI Evolution

David Henty

Dan Holmes

2

Overview

• History of the MPI Standard

– Before MPI

– MPI 1

– MPI 2

• Present of the MPI Standard

– MPI 3.0

• Future of the MPI Standard

– MPI 3.1/4.0/Next

• MPI Implementations

http://www.epcc.ed.ac.uk/

3

Before MPI

• Before MPI there were many competing message passing
libraries.
– Most computer vendors developed their own proprietary libraries.

– There were also various portable libraries:

– These targeted a variety of systems/interconnects.

– Mostly developed by academic groups.

– Usually only optimised for a small subset of the supported
platforms.

• Different libraries used different models of communication

• This made application development very hard

– Applications often needed their own communication module to
encapsulate the different message passing systems.

• MPI was an attempt to define a standard set of communication

calls.

http://www.epcc.ed.ac.uk/

4

MPI Forum

• Main web site at http://meetings.mpi-forum.org/

• The MPI Forum contains representatives from many of the
vendors and academic library developers.

• This is one reason the specification is so large:

– MPI supports many different models of communication, corresponding
to the various communication models supported by its predecessors.

• Much of the specification was driven by the library developers.

– The API leaves a lot of scope for optimised versions on different
hardware.

– Many aspects of the MPI specification deliberately allow different
implementations the freedom to work in different ways.

– This makes it easy to port/optimise MPI for new hardware.

– Application developers need to be aware of this when writing code.

– Erroneous applications may work fine on one MPI implementation
but fail using a different one.

http://www.epcc.ed.ac.uk/

5

History of MPI

• MPI is an “Application Programming Interface” (API)
specification.
– Its a specification not a piece of code.

– There are many different implementations of the MPI specification.

• The MPI Standard is defined by the MPI Forum

– Work started 1992

– Version 1.0 in 1994 – basic point-to-point, collectives, data-types, etc

– Version 1.1 in 1995 – fixes and clarifications to MPI 1.0

– Version 1.2 in 1996 – fixes and clarifications to MPI 1.1

– Version 1.3 in 1997 – refers to MPI 1.2 after combination with MPI-2.0

– Version 2.0 in 1997 – parallel I/O, RMA, dynamic processes, C++, etc

– --- Stable for 10 years ---

– Version 2.1 in 2008 – fixes and clarifications to MPI 2.0

– Version 2.2 in 2009 – small updates and additions to MPI 2.1

– Version 3.0 in 2012 – neighbour collectives, unified RMA model, etc

– Version 3.1 in 2015 – fixes, clarifications and additions to MPI 3.0

http://www.epcc.ed.ac.uk/

MPI-2 One-sided communication

• Separates data transmission from process synchronisation

• All communication parameters specified by a single process

• Definitions: “origin” calls MPI, memory accessed at “target”

• Initialise by creating a “window”
– A chunk of local memory that will be accessed by remote processes

• Open origin “access epoch” (and target “exposure epoch”)

• Communicate: MPI_Put, MPI_Get, MPI_Accumulate

• Synchronise: passive target (or active target)

• Use data that has been communicated

• Tidy up by destroying the window – MPI_Win_free

http://www.epcc.ed.ac.uk/

MPI 3.0

• Major new features
– Non-blocking collectives
– Neighbourhood collectives
– Improvements to one-sided communication
– Added a new tools interface
– Added new language bindings for FORTRAN 2008

• Other new features
– Matching Probe and Recv for thread-safe probe and receive
– Non-collective communicator creation function
– Non-blocking communication duplication function
– “const” correct C language bindings
– New MPI_Comm_split_type function
– New MPI_Type_create_hindexed_block function

• C++ language bindings removed

• Previously deprecated functions removed

http://www.epcc.ed.ac.uk/

MPI 3.0 – Changes to collectives

• Non-blocking versions of all collective communication
functions added

– MPI_Ibcast, MPI_Ireduce, MPI_Iallreduce, etc

– There is even a non-blocking barrier, MPI_Ibarrier

– They return MPI_Request like other non-blocking functions

– The user code must complete the operation with (one of the variants

of) MPI_Test or MPI_Wait

– Multiple non-blocking collectives can be outstanding but they must be

called in the same order by all MPI processes

• New neighbourhood collective functions added

– MPI_Neighbor_allgather and MPI_Neighbor_alltoall (plus variants)

– Neighbours defined using a virtual topology, i.e. cartesian or graph

– Extremely useful for nearest-neighbour stencil-based computations

– Allow a scalable representation for common usage of MPI_Alltoallv

http://www.epcc.ed.ac.uk/

MPI 3.0 – Changes to One-sided

• New window creation functions
– New options for where, when and how window memory is allocated

• New atomic read-modify-write operations
– MPI_Fetch_and_op and MPI_Compare_and_swap

• New “unified” memory model
– Old one still supported, now called “separate” memory model
– Simplifies memory consistency rules on cache-coherent machines

• New local completion semantics for one-sided operations
– MPI_Rput, MPI_Rget and MPI_Raccumulate return MPI_Request
– User can use MPI_Test or MPI_Wait to check for local completion

http://www.epcc.ed.ac.uk/

MPI Next – End-points and Fault-tolerance

• End-points proposal – improved support for hybrid programs

– Allow threads to act like MPI processes

– Allow multiple MPI ranks for a communicator in a single OS process

– Example use-case: easier to map UPC thread id to MPI rank

• Fault-tolerance proposal – improved error-handling

– Allow an MPI program to survive various types of failure

– Node failure, communication link failure, etc

– Notification: local process told particular operation will not succeed

– Propagation: local knowledge of faults disseminated to global state

– Consensus: vote for and agree on a common value despite failures

– Low-level minimum functionality to support fault-tolerance libraries

http://www.epcc.ed.ac.uk/

11

MPI implementations

• There are many different implementations of the MPI
specification.

• Many of the early ones were based on pre-existing portable

libraries.

• Currently there are 2 main open source MPI implementations

– MPICH

– OpenMPI

• Many vendor MPI implementations are now based on these

open source versions.

http://www.epcc.ed.ac.uk/

12

MPI family tree (partial)

MPI

Pre MPI CHIMP (EPCC) P4 etc. (ANL) LAM (Ohio SC)
PVM etc. (ORNL)

CHIMP-MPI

T3D-MPI (EPCC)

T3E-MPI

LAM-MPI

OpenMPI

FT-MPI

LA-MPI PACX-MPI

MPICH-1

MPICH-2

Sun-MPI

XT/XE MPI BG-MPI

http://www.epcc.ed.ac.uk/

13

MPICH

• Virtually the default MPI implementation
– Mature implementation.

– Good support for generic clusters (TCP/IP & shared memory).

– Many vendor MPIs now based on MPICH.

• Original called MPICH (MPI-1 functionality only)

• Re-written from scratch to produce MPICH-2 (MPI-2)

• Incorporated MPI-3 and renamed back to MPICH again

• Ported to new hardware by implementing a small core ADI

– ADI = Abstract Device Interface.

– Full API has default implementation using the core ADI functions.

– Any part can be overridden to allow for optimisation.

http://www.epcc.ed.ac.uk/

14

OpenMPI

• New MPI implementation
– Joint project between developers of

– FT-MPI

– LA-MPI

– LAM/MPI

– PACX/MPI

• Very active project

– In its early days:-

– Special emphasis on support for infiniband hardware

– Special emphasis on Grid MPI

– Fault tolerant communication

– Heterogeneous communication

– Sun switched to OpenMPI with clustertools-7

– Current version supports MPI-3

– Open Source project with large and varied community effort

http://www.epcc.ed.ac.uk/

Summary

• Most MPI implementations use a common “superstructure”
– lots of lines of code
– deals with whole range of MPI issues: datatypes, communicators,

argument checking, …
– will implement a number of different ways (protocols) of sending data
– all hardware-specific code kept separate from the rest of the code,

e.g. hidden behind an Abstract Device Interface

• To optimise for a particular architecture
– rewrite low-level communication functions in the ADI
– optimise the collectives especially for offload hardware
– use machine-specific capabilities when advantageous

• Multi-core nodes
– modern MPI libraries are aware of shared-memory nodes
– already include optimisations to speed up node-local operations
– uses multiple implementations of the same ADI in a single library

http://www.epcc.ed.ac.uk/

