
Data Analytics with HPC 
 
Hadoop 1: Map reduce 

1



Reusing this material 

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US 
 

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original. 
 

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images. 

2



What is MapReduce 

• MapReduce is a parallelisation pattern suitable for 
distributed systems 
- A programming paradigm/ a way of thinking 

• Typically, the programmer supplies map and reduce 
functions and some kind of framework implements all the 
scheduling and data movement required to run the 
program in parallel 

• First publicized by Google to  scale their data processing 
needs (“index the web”) 



Map 

• A function is “mapped” over all input data 
- The same function is applied to each piece of data: 

•  Function f, defined by f(x) =x*x 
•  Then map(f,[1,2,3,4,5]) = [1,4,9,16,25] 

• The map function used for MapReduce must always 
return a list of (key,value) pairs 
- Both key and value are derived in some way from the input data 

• When you run MapReduce at scale, the Map function is 
run on every node where the input data resides 



Reduce 
• Reduce combines data back together 
- Summary operation 

•  In its simplest case, a single function is applied with 
multiple arguments: 
- Reduce(+,[1,2,3]) = 6 

•  In MapReduce the reduce function does not reduce to a 
single number, but to a set of (key,value) pairs where you 
end up with a single value for each input key 



Map Reduce pattern 
• Must provide stateless Map and Reduce functions: 

 

• Framework groups by Key2 before calling reducers 
- Only one reduce call for each unique Key2 key 
- To count words: 

Input Output 
Map <Key1 : Value1> List( <Key2 : Value2> ) 
Reduce <Key2 : List(Value2) > List( <Key3 : Value3> ) 

Input Output 

Map <Integer : Text> List( <Word : Integer> ) 

Reduce <Word : List(Integer) > List( <Word : Integer> ) 

Input Output 
Map <223, “shop at my shop”> [ <shop,1>, <at,1>, <my,1>, <shop,1> ] 
Reduce <shop, [1,1 ]> [<shop, 2>] 

6



Word Count – paper MapReduce exercise 

7



Counting words with Map Reduce 
Map Input Map Output 
<0 : “A boy drove a car”> [<a,1>, <boy,1>, <drove,1>, <a,1>, <car,1>] 
<1 : “A car drove at a bus”> [<a,1>, <car,1>, <drove,1>, <at,1>, <a,1>, <bus,1>] 
<2 : “Can a boy drive a car?”> [<can,1>, <a,1>, <boy,1>, <drive,1>, <a,1>, <car,1>] 
<3 : “A danger – a banana!”> [<a,1>, <danger,1>, <a,1>, <banana,1>] 

8

Reduce Input Reduce output 
<a,[1,1,1,1,1,1,1,1]> <a,8> 
<at, [1]> <at,1> 
<banana,[1]> <banana,1> 
<boy, [1,1]> <boy,2> 
<bus,[1]> <bus,1> 
<can,[1]> <can, 1> 
<car,[1,1,1]> <car, 3> 
<danger,[1]> <danger,1> 
<drive,[1]> <drive,1> 
<drove,[1,1]> <drove,2> 



Map Reduce exercise 1 
• From US National Bureau of Economic Research 
- http://www.nber.org/patents/  (Cite75_99.txt) 
- Lists patent IDs and the other patents they cite 

•  “CITING”, “CITED” 
•  3858241, 956203 
•  3858241, 1324234 
•  3858242, 1515701 
•  3858244, 956203 

• Count the number of times each patent is cited 
- Tip: Do not need output for patents that are never cited 
- Tip: Reader is easily told to ignore the header row 
- Desired output: 

•  956203,  2 
•  1515701, 1 
•  1324234, 1 

-    

9

Input Output 

Map <Key1 : Value1> List( <Key2 : Value2> ) 

Reduce <Key2 : List(Value2) > List( <Key3 : Value3> ) 



Map Reduce exercise 1 answer 
• Reader: key/value pair both of type integer 
• Map: <Integer,Integer> à List(<Integer,Integer>) 
- Extracts the cited patent id and outputs it as key with value 1 

• Reduce <Integer,List(Integer)> à List(<Integer,Integer>) 
- Simply sums the values as outputs along with the input key 

Map Input Map Output 
<3858241, 956203> [<956203,1>] 
<3858241, 1324234> [<1324234,1>] 

Reduce Input Reduce output 
<956203, [1, 1, 1, 1] > <956203, 4> 

<13242434, [1, 1]> <13242434,2> 

10



Map Reduce exercise 2 
• Same citation data set 

“CITING”, “CITED” 
3858241, 956203 
3858241, 1324234 
3858242, 1515701 
3858244, 956203 

• Different problem: What patents cite a certain patent 
• Map Reduce Task: 
-  Invert citation data set to get for each patent the list of patents that 

cite it 
- Desired output: 

956203,  3858241, 3858244 
1515701, 3858242 
1324234, 3858241 

11



Map Reduce exercise 2 answer 
• Reader: key/value pair both of type integer 
• Map: <Integer,Integer> à List(<Integer,Integer>) 
- Extracts the cited patent id and outputs it as key with citing as 

value 

• Reduce <Integer,List(Integer)> à List(<Integer,String>) 
- Concatenates the values as strings and outputs along with the key 

12

Map Input Map Output 
<3858241, 956203> [<956203,3858241>] 
<3858241, 1324234> [<1324234,3858241>] 

Reduce Input Reduce output 
<956203, [3858241, 3858244] > [<956203, “3858241, 3858244”>] 

<13242434, [3858241]> [<13242434, “3858241” >] 



Finding similar patents –exercise3 
• Patent citation 

records: 
“CITING”, “CITED” 
3858241, 956203 
3858241, 1324234 
3858242, 151570 
3858244, 956203 
 

• How could you 
identify similar 
patents? 

•  Patent data: 

13



Finding similar patents with Map 
Reduce 
 

“CITING” “CITED” 
1111 9999 
1111 2222 
1111 7777 

14

“CITING” “CITED” 
1111 9999 
3333 9999 
8888 9999 

Using ‘patents frequently cited together’ strategy 
 

Using ‘patents frequently citing same patents’ strategy 



Finding similar patents with Map Reduce 
• Using ‘patents frequently cited together’ strategy 
• First gather all citations made by each patent: 

15

Reduce Input Reduce Output 
<“1111”, [“9999”, “2222”, “7777”] > [<“1111”, “9999, 2222, 7777”>] 

Map Input Map Output 
<“1111”, “9999”> [<“1111”, “9999”>] 

•  Next count all pairs that are cited together 
Map Input Map Output 
<“1111”, “9999, 2222, 7777”> [ <“2222+9999”, 1>, <“2222+7777”, 1> ,     

  <“7777+9999”, 1>  ] 

Reduce Input Reduce Output 
<“2222+9999”, [ 1, 1, 1, 1 ] > [ <“2222+9999”, 4>] 



Finding similar patents with Map Reduce 
• Using ‘patents frequently citing same patents’ strategy 
• First gather all citations for each patent: 

Reduce Input Reduce Output 
<“9999”, [“1111”, “3333”, “8888”] > [<“9999”, “1111, 3333, 8888”>] 

Map Input Map Output 
<“1111”, “9999”> [<“9999”, “1111”>] 

•  Next count all pairs that are cited together 
Map Input Map Output 
<“9999”, “1111, 3333, 8888”> [ <“1111+3333”, 1>, <“1111+8888”, 1> ,     

  <“3333+8888”, 1>  ] 

Reduce Input Reduce Output 
<“1111+3333”, [ 1, 1, 1, 1 ] > [ <“1111+3333”, 4> 

16



Map Reduce at scale 
• Stateless map and reduce functions allows massive 

parallelisation 
• Between the Map and Reduce stages the grouping and 

moving data stage can be expensive 

17



Joining multiple data sets: Inner Join 

Example from: Hadoop in Action, Chuck Lamb 
18



Reduce side join: repartitioned join 1 
• Add a tag to store 

data source 
filename along with 
each record 
- To preserve stateless 

system 
- For state info 

(metadata) to persist 
- Map function has to 

be the same on all 
data 

• Group key is the 
joining attribute 
- Reducer is called on 

set of records with 
same group key 

 
 

Order and move 

19



Reduce side join: repartitioned join 2 
• Reduce produces cross-

product of records with a 
single instance of each tag 
in each output 

• Second Mapper 
implements join style (inner, 
outer etc):  
- Reorders 
- Strips out tags 
- Skips customer without orders. 

• Hadoop has classes that 
support such join patterns. 

20



Map side join: replicated joins 
• Reduce-side joins (most of processing done on reduce 

side) require lots of expensive data transfer in shuffle 
phase. 

•  If joining one large dataset and one small dataset it may 
be more efficient to move small dataset to all nodes and 
then execute the join at the Map stage (and eliminate the 
Shuffle and Reduce stages). 

• Hadoop provides a Distributed Cache to distribute files to 
all nodes in the cluster. 

21



Alternatives to replication join 
• Sometimes data sets are just too big for replication join 
• Reduce data transfer by map-side filtering 
- Reduce amount of data transfer by filtering to only those records of 

interest, e.g. only those customers who live in Scotland. 
•  Note: applying such a filter may make the data set small enough to use 

the replicated join strategy. 
- Replicate only the join keys rather than the whole records 

•  Thus only data which will actually be joined is transferred 
-  If join keys are still too large consider a smaller data structure that 

gives an approximate answer, e.g. Bloom filter 
•  BloomFilter.contains(x) – returns true if x is in filter 
•  BloomFilter.contains(x) – returns either true or false if x is not in filter. 
•  Level of false positives related to the size of the filter. 

22



Hadoop 
 
• Hadoop with MapReduce 
- Map 
- Reduce 
- Sort 
- Shuffle 

• Hadoop Distributed File System (HDFS) – distributed 
storage 

23



Hadoop Distributed File System 

24



Hadoop Distributed File System 
• Typical use: write once, read many 
- Computation runs on Data Nodes 

• Distributed 
• Data redundancy 
• Cluster of commodity nodes 
• Designed to withstand failure 
- But Name Node is a single point of 

failure (see secondary name node) 

• Optimised for the tasks in hand 
- Not a POSIX file system 

• Placement strategies can be aware 
of data centre configuration 

25



Hadoop Framework 

26



Reading and writing the data 

•  InputFormat interface 
–  TextInputFormat   (key: byte offset of line, value: line text) 
–  KeyValueTextInputFormat  (each line has key/separator/value) 
–  SequenceFileInputFormat (Hadoop’s compressed binary format) 
–  NLineInputFormat (like TextInputFormat but multi-line) 

•  OutputFormat interface 
–  TextOutputFormat (one record per line, key/separator/value) 
–  SequenceFileOutputFormat (compressed binary) 
–  Filename is “part-xxxx” where xxxx is the partition ID 

27



Optimising with a combiner 

28

Map Input Map Output 
<0 : “A boy drove a car”> [<a,1>, <boy,1>, <drove,1>, <a,1>, <car,1>] 
<1 : “A car drove at a bus”> [<a,1>, <car,1>, <drove,1>, <at,1>, <a,1>, <bus,1>] 
<2 : “Can a boy drive a car?”> [<can,1>, <a,1>, <boy,1>, <drive,1>, <a,1>, <car,1>] 
<3 : “A danger – a banana!”> [<a,1>, <danger,1>, <a,1>, <banana,1>] 

Combiner Input Combiner output 
<a,[1,1]> <a, [2]> 

Local reduction operation = reduce communications necessary 



Combiner properties  

• Optimisation only 
- Framework may execute zero, one or more times 
- Must not alter the final result 
- A helper to the reducer 

• Keys must not be altered 
- Hadoop does not re-sort after the Combine stage 

Input Output 
Map <Key1 : Value1> List( <Key2 : Value2> ) 
Combine <Key2 : List(Value2) > <Key2 : List(Value2) > 
Reduce <Key2 : List(Value2) > List( <Key3 : Value3> ) 

29



Partitioner 

•  Hash Partitioner 
–  Default 
–  Everything with same key will be on same node 
–  Diff. keys can end up on same node, too 

•  Total Order Partitioner 
–  Maintains order 
–  Configure to partition evenly 

•  Bespoke 
–  For highly skewed data hash partitioner may not partition work evenly 
–  Maybe some keys require more processing by Reducer 

30



Chaining Map Reduce Jobs 
• A single map reduce job has 
- One REDUCE stage 
- One or more MAP stages before the reduce 
- Zero or more MAP stages after the reduce 

31

•  Need to chain multiple map reduce jobs when: 
–  There is more than one REDUCE stage (grouping of data by key) 
–  MAP stages between REDUCE jobs could be part of either job 



Chain, but don’t iterate 
• Each Hadoop job reads data from the HDFS and writes output 

to the HDFS 
- No data is maintained in memory between jobs 

• Fine for short chains of processing 
• Very inefficient for iterative algorithms 
- Data (even static data) must be read from disk at each iteration 

 

• Spark – supports caching data  
• Twister – iterative map reduce 

  

32



Programming Hadoop 
• Hadoop framework is written in Java 
• Two models for writing Map, Reduce and Combine 

functions 
- Java classes 
- Hadoop streaming 

•  Functions are scripts that read from standard input and write to standard 
output 

•  If writing your own partitioners or getting into the internals 
of Hadoop you will need to use Java 
- But for most problems you do not need to do this. 

33



Map class in Java 

public static class MapClass  
  extends Mapper<Text, Text, Text, Text>  
{ 
    public void map(Text key, Text value, Context context)  
    { 
       context.write(value, key);  
    } 
} 

Mapper< 
  InputKeyType, InputValueType,  
  OutputKeyType, OutputValueType > 

write output data using context.write(outputKey, 
outputValue) 
 
Can call multiple times and hence output 
List(<OutputKeyType, OutputValueType>) 

Must implement function: 
void map(InputKeyType, InputValueType, Context)  

This mapper simply swaps 
the key and value 

34



Reduce class in Java 

public static class Reduce  
   extends Reducer<Text, Text, Text, Text>  
{ 
  public void reduce( Text key,  
                      Iterable<Text> values,  
                      Context context)  
  { 
    String csv = “”; 
    for (Text val:values)  
    { 
      if (csv.length() > 0) csv += “,”; 
      csv += val.toString(); 
    } 
    context.write(key, new Text(csv)); 
  } 
} 
 

Reducer< 
  InputKeyType, InputValueType,  
  OutputKeyType, OutputValueType > 

Uses iterator to get list 
of values – can thus 
support large lists with 
low memory footprint. 
So long as the rest of 
the method is similarly 
low memory. This 
example is not! 

write output data using 
context.write(outputKey, outputValue) 
Can call multiple times if desired 35



Streaming Mapper (see demo) 
•  Input: rows of key/value pairs separated by TAB character 
• Output: rows of key/value pairs separated by TAB character 
• Stateless 
- Process one line at a time with no state maintained between lines. 

1<TAB>A long time ago 

2<TAB>in a galaxy far 

3<TAB>far away 

a<TAB>1 

long<TAB>1 

time<TAB>1 

ago<TAB>1 

in<TAB>1 

a<TAB>1 

galaxy<TAB>1 

... 36



Streaming Reducer 
•  Input is rows of key/value pairs separated by TAB 

character 
•  Input guarantees that all the key/value pairs associated 

with a specific key will be contiguous in the input stream 
- When key changes you know you have seen all the values 

associated with that key 

• Output rows of key/value pairs separated by TAB 
character 

• Stateless 
- Can maintain state while processing rows with the same key. 
- Must not maintain state across rows with different keys 

37



Streaming Reducer 

a<TAB>3 

far<TAB>2 

time<TAB>1 

a<TAB>1 

a<TAB>1 

a<TAB>1 

far<TAB>1 

far<TAB>1 

time<TAB>1 

38



Hadoop vs MPI/HPC 
• Fault tolerance 
- Hadoop is designed specifically with fault tolerance in mind 
- MPI provides little support for fault tolerance and most MPI 

programs assume the system hardware will not fail 

• Specific vs general 
- Hadoop is a framework for a specific data processing pattern 
- MPI allows you to code any algorithm you wish 

•  Iterative algorithms 
- Hadoop very poor at multiple iterations over the data 
- Very easy to write such programs in MPI 

• Speed 
-  If you have a reliable HPC system an optimised MPI 

implementation should perform considerably better than Hadoop 

• Hadoop good when data written once – processed often 
• Hadoop used key value pair structures that can be 

fragemented in memory leading to poor cache efficiency 
• Trade off between simple, highly scalable on commodity 

hardware against highly optimised implementation on very 
expensive hardware 

39



Hadoop vs MPI/HPC cont. 
• Cost 
- Hadoop simple to write and can run reliably on commodity 

hardware. 
- MPI typically run on expensive HPC systems 

•  MPI can run on clouds but have to build your own fault tolerance. 

• Dynamic nature of data 
- Hadoop is good for processing massive amounts of data that is 

written once and processed often 
- HPC systems may not scale well to such massive datasets being 

uploaded. 

40



Hadoop Ecosystem 
• HBASE 
- Distributed, scalable big data store 
- Columnar database 

• PIG 
- Higher level data flow language for 

programming Hadoop 

• Mahout 
- Scalable machine learning and data 

mining over Hadoop 

• Spark 
- Machine learning algorithms 

41



A little more on Spark 
• Explicitly supports caching data 
- Speeds up iterative algorithms  

• Can use HDFS as the data source 
• More that just map/reduce 
- Transformations: 

•  map, filter, union, Cartesian, join, sample… 
- Actions: 

•  reduce, collect, count, first, countBy, foreach… 

42



Additional reading 
• Google File System 
- http://static.googleusercontent.com/media/research.google.com/

en//archive/gfs-sosp2003.pdf 

• Map Reduce 
- http://static.googleusercontent.com/media/research.google.com/

en//archive/mapreduce-osdi04.pdf 

43

•  Examples taken from Hadoop in Action 
–  http://www.manning.com/lam/ 

•  For Hadoop 3, O’Reilly’s Hadoop, The 
Definitive Guide is good. 

•  Plenty online 



Thanks 
• Ally Hume, EPCC 
• Adam Carter, EPCC 
• Eilidh Troup, EPCC 

44


