Message-Passing Programming

Cellular Automaton Exercise

State Table

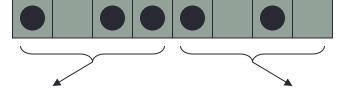
• If $R^t(i) = 0$, then $R^{t+1}(i)$ is given by:

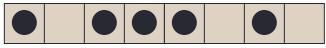
	$R^t(i-1)=0$	$R^t(i-1)=1$
$R^t(i+1) = 0$	0	1
$R^t(i+1)=1$	0	1

• If $R^t(i) = 1$, then $R^{t+1}(i)$ is given by:

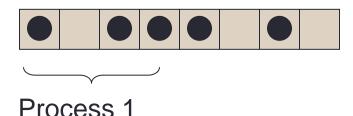
	$R^t(i-1)=0$	$R^t(i-1)=1$
$R^t(i+1)=0$	0	0
$R^t(i+1)=1$	1	1

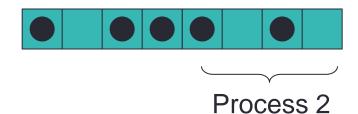
Pseudo Code


```
declare arrays old(i) and new(i), i = 0,1,...,N,N+1
initialise old(i) for i = 1, 2, ..., N-1, N (eg randomly)
loop over iterations
  set old(0) = old(N) and set old(N+1) = old(1)
  loop over i = 1, ..., N
    if old(i) = 1
      if old(i+1) = 1 then new(i) = 1 else new(i) = 0
    if old(i) = 0
      if old(i-1) = 1 then new(i) = 1 else new(i) = 0
  end loop over i
  set old(i) = new(i) for i = 1, 2, ..., N-1, N
end loop over iterations
```

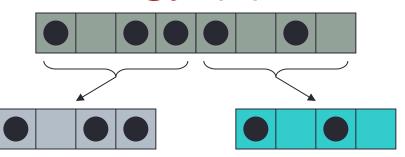


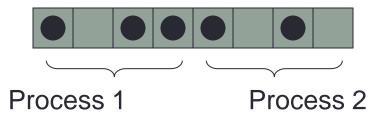
Parallelisation Strategy (1)


Broadcast data to 2 processes:



Split calculation between 2 processes:


- •Globally resynchronise all data after each move
 - a replicated data strategy
- •Every process stores the entire state of the calculation
 - e.g. any process can compute total number of moves

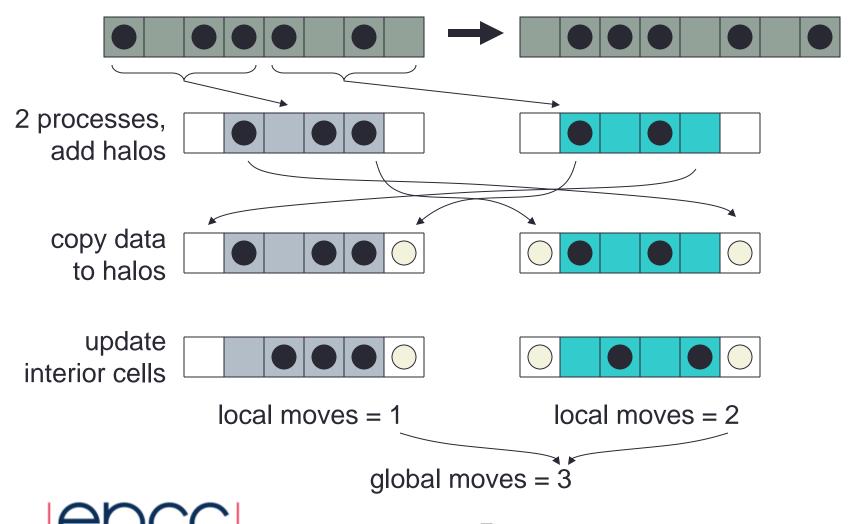

Parallelisation Strategy (2)

Scatter data between 2 processes: **distributed data** strategy

- Internal cells can be updated independently.
- •Must communicate with neighbouring processes to update edge cells.
- •Sum local number of moves on each process to obtain total number of moves at each iteration.

Split calculation between 2 processes:

- •Each process must know which part of roadway it is updating.
- •Synchronise at completion of each iteration and obtain total number of moves.


Parallelisation

- Load balance not an issue
 - updates take equal computation regardless of state of road
 - split the road into equal pieces of size N/P
- For each piece
 - rule for cell i depends on cells i-1 and i+1
 - the N/P 2 interior cells can be updated independently in parallel
 - however, the edge cells are updated by other processors
 - similar to having separate rules for boundary conditions
- Communications required
 - to get value of edge cells from other processors
 - to produce a global sum of the number of cars that move

Message Passing Parallelisation

