
Message-Passing

Programming
Memory allocation and ordering

Fortran array syntax

• MPI derived types enable strided data to be sent/received

- no explicit copy in/out required

• For Fortran

- why not use Fortran array syntax?

• Some subtleties for non-blocking operations

- see notes on Learn

2

Array Layout in Memory

• Data is contiguous in memory

- different conventions in C and Fortran

- for statically allocated C arrays x == &x[0][0]

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

5

13

2

6

10

14

3

7

11

15

4

8

12

16

9 3

C: x[4][4] F: x(4,4)

1 5 13 2 6 10 14 3 7 11 15 4 8 12 16 9

C: x[16] F: x(16)

i

j

Aside: Dynamic Arrays in C

• Data non-contiguous, and x != &x[0][0]

- cannot use regular templates such as vector datatypes

- cannot pass x to any MPI routine

4

float **x = (float **) malloc(4, sizeof(float *));

for (i=0; i < 4; i++)

{

 x[i] = (float *) malloc(4, sizeof(float));

}

1

5
13

2

6

10

14

3

7

11

15

4

8

12

16

9

x

x[0] x[1] x[3] x[2]

Arralloc

• Data is now contiguous, but still x != &x[0][0]

- can now use regular template such as vector datatype

- must pass &x[0][0] (start of contiguous data) to MPI routines

- see PSMA-arralloc.tar for example of use in practice

• Will illustrate all calls using &x[i][j] syntax

- correct for both static and (contiguously allocated) dynamic arrays

5

float **x = (float **) arralloc(sizeof(float), 2, 4, 4);

/* do some work */

free((void *) x);

1 5 13 2 6 10 3 7 11 4 8 12 9 x x[0] x[1] x[3] x[2]

