
Remote Memory

Access
Getting started with RMA

Outline

• MPI RMA Basic Concepts

• Why RMA?

• Terminology

• Program flow

• Getting started with RMA

• Management of windows

• Fence synchronization

• Moving data around

• Practical

• Modifying P2P code to use RMA

MPI RMA Concepts

Why RMA

• One-sided communication functions are an interface to

MPI RMA

• Is a natural fit for some codes

• Can provide a performance/scalability increase for your

codes

• Programmability reasons

• Hardware (interconnect) reasons

• But is not a silver bullet!

Terminology

• Origin is the process initiating the request (performs the

call)

• Irrespective of whether data is being retrieved or written

• Target is the process whose memory is accessed

• By the origin, either remotely reading or writing to this

• All remote access performed on windows of memory

• All access calls are non-blocking and issued inside an

epoch

• The epoch is what forces synchronisation of these calls

RMA program flow

• Collectively initialise a window

a) Start an RMA epoch (synchronisation)

b) Issue communication calls

c) Stop an RMA epoch (synchronisation)

• Collectively free the window

Repeat as many

times as you want

Getting started with RMA

Window management, fences and data movement

Window creation
• A collective call, issued by all processes in the

communicator

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,

 MPI_Info info, MPI_Comm comm, MPI_Win *win)

• Each process may specify completely different locations, sizes, displacement

units and info arguments.

• You can specify no memory with a zero size and NULL base

• The same region of memory may appear in multiple windows that have been

defined for a process. But concurrent communications to overlapping

windows are disallowed.

• Performance may be improved by ensuring that the windows align with

boundaries such as word or cache-line boundaries.

Other window management

• Retrieving window attributes
int MPI_Win_get_attr(MPI_Win win, int win_keyval,

 void *attribute_val, int *flag)

• win_keyval is one of MPI_WIN_BASE, MPI_WIN_SIZE, MPI_WIN_DISP_UNIT,

MPI_WIN_CREATE_FLAVOR, MPI_WIN_MODEL

• Attribute_val if the attribute is available and in this case (flag is true),

otherwise flag will be false

• Freeing a window
int MPI_Win_free(MPI_Win *win)

• All RMA calls must have been completed (i.e. the epoch stopped)

Fences
• Synchronisation calls are required to start and stop an

epoch

• Fences are the simplest way of doing this where global

communication phases alternate with global communication

• Most closely follows a barrier synchronisation

• A (collective) fence is called at the start and stop of an epoch
int MPI_Win_fence(int assert, MPI_Win win)

MPI_Win_fence(0, window);

Communication calls go here

MPI_win_fence(0, window);

RMA can not be started until

this first fence

All issued communication

calls block here

Fence attributes
• Attributes allow you to tell the MPI library more information for

performance (but MPI implementations are allowed to ignore it!)

• MPI_MODE_NOSTORE local window is not updated by local writes of

any form since last synchronisation. Can be different on processes

• MPI_MODE_NOPUT local window will not be updated by

put/accumulate RMA operations until AFTER the next synchronisation

call. Can be different on processes

• MPI_MODE_NOPRECEDE fence does not complete any sequence of

locally issues RMA calls. Attribute must be given by all processes

• MPI_MODE_NOSUCCEED fence does not start any sequence of

locally issued RMA calls. Attribute must be given by all processes

• Attributes can be or’d together, i.e.
• MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NO_SUCCEED),

 window)

RMA Communication calls
• Three general calls, all non-blocking:

• Get data from target’s memory
int MPI_Get(void *origin_addr, int origin_count,

 MPI_Datatype origin_datatype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_datatype, MPI_Win win)

• Put data into target’s memory
int MPI_Put(const void *origin_addr, int origin_count,

 MPI_Datatype origin_datatype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_datatype, MPI_Win win)

• Accumulate data in target’s memory with some other data
int MPI_Accumulate(void *origin_addr, int origin_count,

 MPI_Datatype origin_datatype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

RMA communication comments
• Similarly to non-blocking P2P one must wait for synchronisation (i.e. end

of epoch) until accessing retrieved data (get) or overwriting written data
(put/accumulate)

• target_disp is in bytes (multipled by window displacement unit),
origin_count and target_count are in elements of data type

• Undefined operations:
• Local stores/reads with a remote PUT in an epoch

• Several origin processes performing concurrent PUT to the same target location

• Single origin process performing multiple PUTs to the same target location in a single
epoch

• Accumulate supports the MPI_Reduce operations, but NOT user defined
operations. Also supports MPI_REPLACE which is effectively the same
as a put.

Example
MPI_Win win;

if (rank == 0) {

 MPI_Win_create(buf, sizeof(int)*20, 1, MPI_INFO_NULL, comm, &win);

} else {

 MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, comm, &win);

}

MPI_Win_fence(MPI_MODE_NOPRECEDE,win);

if (rank != 0) {

 MPI_Get(mybuf, 20 , MPI_INT, 0, 0, 20, MPI_INT, win);

}

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

MPI_Win_free(&win)

Based on an example at

cvw.cac.cornell.edu/MPIoneSided/fence

Rank 0 creates a window of 20

integers, displacement unit = 1

Other ranks create a window but

attach no local memory

Fence, no preceding RMA calls

Non-zero ranks get the 20 integers

from rank 0

Fence, complete all communications

and no RMA calls in next epoch

Practical

2D Jacobi solving Laplace’s equation

• Decomposed in X

dimension only.

• All halo swapping

communications are

currently non-blocking

P2P

• Replace these with RMA

• C and Fortran versions

provided

Y

X

Practical

• MPI API online reference:
• http://www.mpich.org/static/docs/v3.2/www3/

• Instructions at
• http://www.archer.ac.uk/training/course-

material/2016/09/160929_AdvMPI_EPCC/mpi_rma.pdf

• Zip file at
• http://www.archer.ac.uk/training/course-

material/2016/09/160929_AdvMPI_EPCC/jacobi.zip

• Makefile and submission script included using qsub on ARCHER

http://www.mpich.org/static/docs/v3.2/www3/
http://www.mpich.org/static/docs/v3.2/www3/
http://www.mpich.org/static/docs/v3.2/www3/
http://www.archer.ac.uk/training/course-material/2016/09/160929_AdvMPI_EPCC/jacobi.zip
http://www.archer.ac.uk/training/course-material/2016/09/160929_AdvMPI_EPCC/jacobi.zip
http://www.archer.ac.uk/training/course-material/2016/09/160929_AdvMPI_EPCC/jacobi.zip
http://www2.epcc.ed.ac.uk/~nbrown23/mpi_rma.pdf
http://www.archer.ac.uk/training/course-material/2016/09/160929_AdvMPI_EPCC/jacobi.zip
http://www.archer.ac.uk/training/course-material/2016/09/160929_AdvMPI_EPCC/jacobi.zip
http://www.archer.ac.uk/training/course-material/2016/09/160929_AdvMPI_EPCC/jacobi.zip

