
Advanced Parallel Programming Exercises
MPI Neighbourhood Collectives on ARCHER

Dan Holmes

21st March 2015

1 Introduction

The purpose of this exercise is to investigate the neigbourhood collective functions defined in MPI 3.0,
specifically comparing the readability relative to point-to-point MPI operations and measuring the relative
communication performance for a typical halo-exchange code. You are given example code (taken from
the MPI 3.0 Standard), which demonstrates a 2-D halo-exchange communication pattern using a 2-D
cartesian topology and the MPI_Neighborhood_Alltoallw function. The sample code uses a
vector data-type, created with MPI_Type_vector, to describe each of the four non-contiguous halo
regions.

2 Compiling and Running

The sample code is contained in APP-Neighbours-Code.tar.gz on the APP web pages.

On ARCHER, you should be able to compile it without code changes. It can be executed but it will not
do anything useful yet, other than prove that the MPI library installed on ARCHER has support for the
necessary MPI functions.

Read the sample code, especially main.c, and make sure that you understand what it is doing before
proceeding.

3 Experiments

Take your existing image processing code (e.g. from the MPP course) and modify it to use a single
neighbourhood collective call per loop iteration instead of multiple point-to-point communication calls.
Make sure that the setup code for the neighbourhood collective is only executed once before the loop
begins and that the clean-up code is executed only once after the loop has finished. The comments in the
sample code should help to identify which pieces of sample code need to go where in your code. Make
sure that you modify the sample code to fit your code, in particular your array size will likely be different
so the data-type definitions will need to be changed as will the send and receive displacements.

Compile your new version of code and verify that it executes correctly (and still gives the correct answer).
Measure the performance of your new version of code and compare it with the performance of the original
version.

Is your new code faster? Is it easier to read?

1



4 Further Experiments

Modify the new version of your code so that it uses the non-blocking neighbourhood collective function
and compare the performance of this version with the blocking neighbourhood collective version as well
as with the blocking and non-blocking point-to-point versions.

2


