
OPENMP
TIPS, TRICKS AND
GOTCHAS

Mark Bull
EPCC, University of Edinburgh (and OpenMP
ARB)
markb@epcc.ed.ac.uk

Directives

• Mistyping the sentinel (e.g. !OMP or #pragma opm)
typically raises no error message.

•  Be careful!

•  Extra nasty if it is e.g. #pragma opm atomic – race condition!

•  Write a script to search your code for your common typos

OpenMPCon 2015 2

Writing code that works without OpenMP too

• The macro _OPENMP is defined if code is compiled with
the OpenMP switch.
•  You can use this to conditionally compile code so that it works with

and without OpenMP enabled.

•  If you want to link dummy OpenMP library routines into
sequential code, there is code in the standard you can
copy (Appendix A in 4.0)

OpenMPCon 2015 3

Parallel regions
• The overhead of executing a parallel region is typically in the

tens of microseconds range
•  depends on compiler, hardware, no. of threads

• The sequential execution time of a section of code has to be
several times this to make it worthwhile parallelising.

•  If a code section is only sometimes long enough, use the if
clause to decide at runtime whether to go parallel or not.
•  Overhead on one thread is typically much smaller (<1µs).

• You can use the EPCC OpenMP microbenchmarks to do
detailed measurements of overheads on your system.

• Download from www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking

OpenMPCon 2015 4

Is my loop parallelisable?
• Quick and dirty test for whether the iterations of a loop are

independent.
• Run the loop in reverse order!!
• Not infallible, but counterexamples are quite hard to construct.

OpenMPCon 2015 5

Loops and nowait
#pragma omp parallel
{
#pragma omp for schedule(static) nowait
 for(i=0;i<N;i++){
 a[i] =
 }
#pragma omp for schedule(static)
 for(i=0;i<N;i++){
 ... = a[i]
 }
}

•  This is safe so long as the
number of iterations in the
two loops and the
schedules are the same
(must be static, but you
can specify a chunksize)

•  Guaranteed to get same
mapping of iterations to

threads.

OpenMPCon 2015 6

Default schedule
• Note that the default schedule for loops with no schedule

clause is implementation defined.
• Doesn’t have to be STATIC.
•  In practice, in all implementations I know of, it is.
• Nevertheless you should not rely on this!
• Also note that SCHEDULE(STATIC) does not completely

specify the distribution of loop iterations.
•  don’t write code that relies on a particular mapping of iterations to

threads

OpenMPCon 2015 7

Tuning the chunksize
• Tuning the chunksize for static or dynamic schedules can be

tricky because the optimal chunksize can depend quite
strongly on the number of threads.

•  It’s often more robust to tune the number of chunks per thread
and derive the chunksize from that.
•  chunksize expression does not have to be a compile-time constant

OpenMPCon 2015 8

SINGLE or MASTER?
• Both constructs cause a code block to be executed by one

thread only, while the others skip it: which should you use?

• MASTER has lower overhead (it’s just a test, whereas
SINGLE requires some synchronisation).

• But beware that MASTER has no implied barrier!

•  If you expect some threads to arrive before others, use
SINGLE, otherwise use MASTER

OpenMPCon 2015 9

Data sharing attributes
• Don’t forget that private variables are uninitialised on entry to

parallel regions!

• Can use firstprivate, but it’s more likely to be an error.
•  use cases for firstprivate are surprisingly rare.

OpenMPCon 2015 10

Default(none)
• The default behaviour for parallel regions and worksharing

construct is default(shared)

• This is extremely dangerous - makes it far too easily to
accidentally share variables.

• Possibly the worst design decision in the history of
OpenMP!

• Always, always use default(none)
•  I mean always. No exceptions!
•  Everybody suffers from “variable blindness”.

OpenMPCon 2015 11

Spot the bug!
#pragma omp parallel for private(temp)
 for(i=0;i<N;i++){

 for (j=0;j<M;j++){
 temp = b[i]*c[j];
 a[i][j] = temp * temp + d[i];
 }
 }

• May always get the right result with sufficient compiler
optimisation!

OpenMPCon 2015 12

Private global variables
double foo;

#pragma omp parallel \
private(foo)
{
 foo =
 a = somefunc();
}

extern double foo;

double sumfunc(void){

 ... = foo;

}

•  Unspecified whether the reference to foo in somefunc is to the
original storage or the private copy.

•  Unportable and therefore unusable!
•  If you want access to the private copy, pass it through the

argument list (or use threadprivate).

OpenMPCon 2015 13

Huge long loops
• What should I do in this situation? (typical old-fashioned

Fortran style)

 do i=1,n
 several pages of code referencing 100+
 variables
 end do

• Determining the correct scope (private/shared/reduction) for
all those variables is tedious, error prone and difficult to test
adequately.

OpenMPCon 2015 14

• Refactor sequential code to
 do i=1,n
 call loopbody(......)
 end do

• Make all loop temporary variables local to loopbody
• Pass the rest through argument list
• Much easier to test for correctness!
• Then parallelise......
• C/C++ programmers can declare temporaries in the scope of

the loop body.

OpenMPCon 2015 15

Reduction race trap
#pragma omp parallel shared(sum, b)
{
 sum = 0.0;
#pragma omp for reduction(+:sum)
 for(i=0;i<n:i++) {
 sum += b[i];
 }
.... = sum;
}

• There is a race between the initialisation of sum and the
updates to it at the end of the loop.

OpenMPCon 2015 16

Missing SAVE or static
• Compiling my sequential code with the OpenMP flag caused it

to break: what happened?
• You may have a bug in your code which is assuming that the

contents of a local variable are preserved between function
calls.
•  compiling with OpenMP flag forces all local variables to be stack

allocated and not heap allocated
•  might also cause stack overflow

• Need to use SAVE or static correctly
•  but these variables are then shared by default
•  may need to make them threadprivate
•  “first time through” code may need refactoring (e.g. execute it before the

parallel region)

OpenMPCon 2015 17

Stack size
•  If you have large private data structures, it is possible to run

out of stack space.
• The size of thread stack apart from the master thread can be

controlled by the OMP_STACKSIZE environment variable.
• The size of the master thread’s stack is controlled in the same

way as for sequential program (e.g. compiler switch or using
ulimit).
•  OpenMP can’t control this as by the time the runtime is called it’s too

late!

OpenMPCon 2015 18

Critical and atomic
• You can’t protect updates to shared variables in one place

with atomic and another with critical, if they might contend.
• No mutual exclusion between these

•  critical protects code, atomic protects memory locations.

 #pragma omp parallel
 {
 #pragma omp critical
 a+=2;
 #pragma omp atomic
 a+=3;
 }

OpenMPCon 2015 19

Allocating storage based on number of threads
• Sometimes you want to allocate some storage whose size is

determined by the number of threads.
•  but how do you know how many threads the next parallel region will

use?

• Can call omp_get_max_threads() which returns the value
of the nthreads-var ICV. The number of threads used for the
next parallel region will not exceed this
•  except if a num_threads clause is used.

• Note that the implementation can always deliver fewer threads
than this value
•  if your code depends on there actually being a certain number of

threads, you should always call omp_get_num_threads() to check

OpenMPCon 2015 20

Environment for performance
• There are some environment variables you should set to

maximise performance.
•  don’t rely on the defaults for these!

OMP_WAIT_POLICY=active
• Encourages idle threads to spin rather than sleep
OMP_DYNAMIC=false
• Don’t let the runtime deliver fewer threads than you asked for
OMP_PROC_BIND=true
• Prevents threads migrating between cores

OpenMPCon 2015 21

Debugging tools
• Traditional debuggers such as DDT or Totalview have support

for OpenMP

• This is good, but they are not much help for tracking down
race conditions
•  debugger changes the timing of event on different threads

• Race detection tools work in a different way
•  capture all the memory accesses during a run, then analyse this data for

races which might have occured.
•  Intel Inspector XE
•  Oracle Solaris Studio Thread Analyzer

OpenMPCon 2015 22

Timers
• Make sure your timer actually does measure wall clock time!

• Do use omp_get_wtime() !

• Don’t use clock() for example
•  measures CPU time accumulated across all threads
•  no wonder you don’t see any speedup......

OpenMPCon 2015 23

