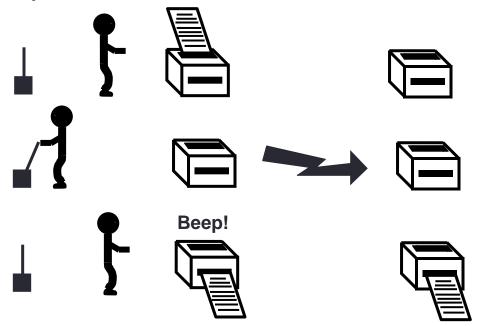

Non-Blocking Communications

Deadlock

Completion

- The mode of a communication determines when its constituent operations complete.
 - i.e. synchronous / asynchronous
- The form of an operation determines when the procedure implementing that operation will return
 - i.e. when control is returned to the user program

Blocking Operations

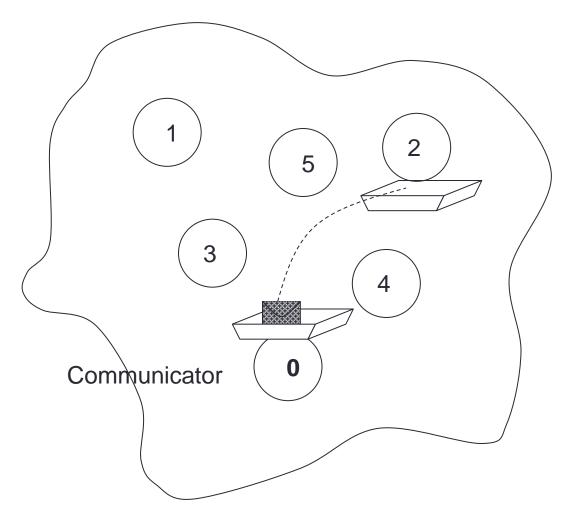

- Relate to when the operation has completed.
- Only return from the subroutine call when the operation has completed.
- These are the routines you used thus far
 - MPI_Ssend
 - MPI_Recv

Non-Blocking Operations

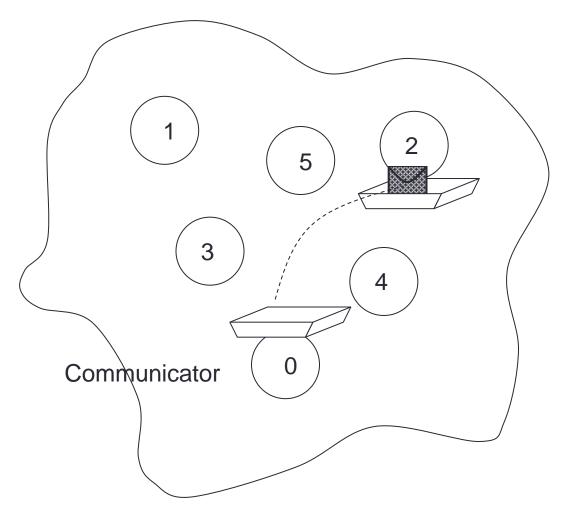
 Return straight away and allow the sub-program to continue to perform other work. At some later time the sub-program can test or wait for the completion of the non-blocking operation.

Non-Blocking Operations

- All non-blocking operations should have matching wait operations. Some systems cannot free resources until wait has been called.
- A non-blocking operation immediately followed by a matching wait is equivalent to a blocking operation.
- Non-blocking operations are not the same as sequential subroutine calls as the operation continues after the call has returned.


Non-Blocking Communications

- Separate communication into three phases:
- Initiate non-blocking communication.
- Do some work (perhaps involving other communications?)
- Wait for non-blocking communication to complete.


Non-Blocking Send

Non-Blocking Receive

Handles used for Non-blocking Comms

- datatype same as for blocking (MPI_Datatype or INTEGER).
- communicator same as for blocking (MPI_Comm or INTEGER).
- request MPI_Request or INTEGER.
- A request handle is allocated when a communication is initiated.

Non-blocking Synchronous Send

```
• C:
 int MPI Issend(void* buf, int count,
                MPI Datatype datatype, int dest,
                int tag, MPI Comm comm,
                MPI Request *request)
 int MPI Wait(MPI Request *request,
              MPI Status *status)
Fortran:
      MPI ISSEND (buf, count, datatype, dest,
                 tag, comm, request, ierror)
      MPI WAIT(request, status, ierror)
```


Non-blocking Receive

```
• C:
 int MPI Irecv(void* buf, int count,
               MPI Datatype datatype, int src,
               int tag, MPI Comm comm,
               MPI Request *request)
 int MPI Wait(MPI Request *request,
              MPI Status *status)
Fortran:
      MPI IRECV (buf, count, datatype, src,
                tag, comm, request, ierror)
      MPI WAIT(request, status, ierror)
```


Blocking and Non-Blocking

- Send and receive can be blocking or non-blocking.
- A blocking send can be used with a non-blocking receive, and vice-versa.
- Non-blocking sends can use any mode synchronous, buffered, standard, or ready.
- Synchronous mode affects completion, not initiation.

Communication Modes

NON-BLOCKING OPERATION	MPI CALL
Standard send	MPI_ISEND
Synchronous send	MPI_ISSEND
Buffered send	MPI_IBSEND
Ready send	MPI_IRSEND
Receive	MPI_IRECV

Completion

- Waiting versus Testing.
- C:

Fortran:

```
MPI_WAIT(handle, status, ierror)
MPI TEST(handle, flag, status, ierror)
```

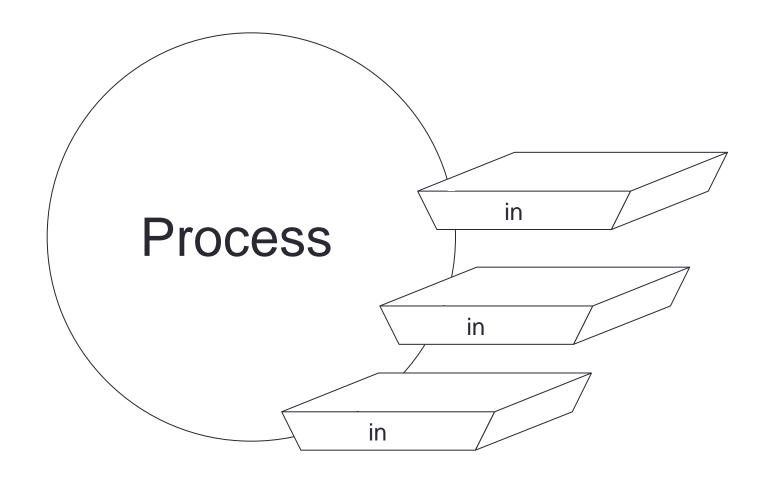

Example (C)

```
MPI Request request;
MPI Status status;
if (rank == 0)
    MPI Issend (sendarray, 10, MPI INT, 1, tag,
               MPI COMM WORLD, &request);
    Do something else while Issend happens();
    // now wait for send to complete
    MPI Wait (&request, &status);
else if (rank == 1)
    MPI Irecv(recvarray, 10, MPI INT, 0, tag,
                MPI COMM WORLD, &request);
    Do something else while Irecv happens();
// now wait for receive to complete;
   MPI Wait (&request, &status);
```


Example (Fortran)

```
integer request
integer, dimension (MPI STATUS SIZE) :: status
if (rank == 0) then
    CALL MPI ISSEND (sendarray, 10, MPI INTEGER, 1, tag,
               MPI COMM WORLD, request, ierror)
    CALL Do something else while Issend happens()
    ! now wait for send to complete
    CALL MPI Wait (request, status, ierror)
else if (rank == 1) then
    CALL MPI IRECV (recvarray, 10, MPI INTEGER, 0, tag,
                MPI COMM WORLD, request, ierror)
    CALL Do something else while Irecv happens()
    ! now wait for receive to complete
    CALL MPI Wait (request, status, ierror)
```

endif


Multiple Communications

- Test or wait for completion of one message.
- Test or wait for completion of all messages.
- Test or wait for completion of as many messages as possible.

Testing Multiple Non-Blocking Comms

Combined Send and Receive

- Specify all send / receive arguments in one call
 - MPI implementation avoids deadlock
 - useful in simple pairwise communications patterns, but not as generally applicable as non-blocking

Exercise

Rotating information around a ring

- See Exercise 4 on the sheet
- Arrange processes to communicate round a ring.
- Each process stores a copy of its rank in an integer variable.
- Each process communicates this value to its right neighbour, and receives a value from its left neighbour.
- Each process computes the sum of all the values received.
- Repeat for the number of processes involved and print out the sum stored at each process.

Possible solutions

- Non-blocking send to forward neighbour
 - blocking receive from backward neighbour
 - wait for forward send to complete
- Non-blocking receive from backward neighbour
 - blocking send to forward neighbour
 - wait for backward receive to complete
- Non-blocking send to forward neighbour
- Non-blocking receive from backward neighbour
 - wait for forward send to complete
 - wait for backward receive to complete

Notes

- Your neighbours do not change
 - send to left, receive from right, send to left, receive from right, ...
- You do not alter the data you receive
 - receive it
 - add it to you running total
 - pass the data *unchanged* along the ring
- You must not access send or receive buffers until communications are complete
 - cannot read from a receive buffer until after a wait on irecv
 - cannot overwrite a send buffer until after a wait on issend

