
Image sharpening 
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Running a simple parallel program
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Aims (i)

• To familiarise yourself with running parallel programs

• To run a real parallel code (that does file I/O)

• On different numbers of cores

• Measure the time taken

• Observe increase in performance (Amdahl’s law? – see later)

• Acknowledgements

• Algorithm, diagrams and images taken from:

• Hypermedia Image Processing Reference, Bob Fisher, Simon 
Perkins, Ashley Walker and Erik Wolfart, Department of Artificial 
Intelligence, University of Edinburgh (1994)



Aims (ii)

• To get you running on the machine

• To sort out all the practical details

• usernames

• passwords

• graphics

• transferring files

• using the batch system

• idiosyncrasies of your Windows / Mac / Linux laptop

• Please ask for assistance if you need it!

• Demonstrators are here to help with all aspects of course



The image sharpening problem

Algorithm and implementation



Image sharpening

• Images can be fuzzy for two main reasons

• random noise

• blurring

• Aim to improve quality by

• smoothing to remove noise

• detecting edges

• sharpening up the image with the edges

edgesfuzzy sharp



Technicalities

• Each pixel replaced by a weighted average of its neighbours

• weighted by a 2D Gaussian

• averaged over a square region

• we will use:

• Gaussian width of 1.4

• a 17x17 square

• then apply a Laplacian

• this detects edges

• a 2D second-derivative 2

• Combine both operations
• produces a single convolution filter



Implementation

• For over every pixel in the image

• loop over all pixels in the 17x17 square surrounding it

• add in the value of the pixel weighted by a filter

• This gives the edges

• add the edges back into the original image with some scaling factor

• we use 2.0

• rescale the sharpened image so pixels lie in the range 0 - 255



Existing parallelisation

How the code takes advantage of multiple processors



Parallelisation

• Each pixel can be processed independently

• A master process reads the image

• Broadcast the whole image to every process

• Each process computes edges for a subset of pixels:
• scan the image line by line

• with four processes, each process computes every fourth pixel

• Combine the edges back onto a master process
• add back into original image and rescale

• save to disk

• Reports two times:
• calculation time for just computing edges on each process

• overall time for the whole program including IO



Parallelisation
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A number of implementations provided

• Supply a serial version for reference

• Parallelisation is achieved using message-passing model

• Implemented using MPI

• the Message-Passing Interface

• Another version parallelised using shared-variables model

• Implemented using OpenMP

• HPC standard for threaded programming

• for interest - not critical to this exercise

• These concepts will be explained later in the course …



Miscellaneous notes

Extra stuff to help you with the practical



PBS job submission scripts

#PBS -N sharpen

#PBS -l select=1

# now stuff that actually executes

…

aprun -n 4 ./sharpen

how many cores to 

run on – remember 

24 cores per node!

parallel job launcher

how many nodes

you want

program to run

name for PBS 

batch job



Compiling and Running

• We provide a tar file with code (C or Fortran) and image

• copy tar file it to your local account

• unpack it

• compile it

• run it on the back end using appropriate batch scripts

• view the input and output images using display program

• note the times for different numbers of processors

• can you interpret them?


