
Introduction to OpenMP
Lecture 2: OpenMP fundamentals



Overview

• Basic Concepts in OpenMP

• History of OpenMP

• Compiling and running OpenMP programs



What is OpenMP? 
• OpenMP is an API designed for programming shared memory 

parallel computers.

• OpenMP uses the concepts of threads and tasks

• OpenMP is a set of extensions to Fortran, C and C++

• The extensions consist of:
• Compiler directives

• Runtime library routines

• Environment variables



Directives and sentinels

• A directive is a special line of source code with meaning only 

to certain compilers. 

• A directive is distinguished by a sentinel at the start of the line.

• OpenMP sentinels are:

• Fortran: !$OMP

• C/C++: #pragma omp

• This means that OpenMP directives are ignored if the code is 

compiled as regular sequential Fortran/C/C++. 



Parallel region

• The parallel region is the basic parallel construct in OpenMP. 

• A parallel region defines a section of a program.

• Program begins execution on a single thread (the master thread).

• When the first parallel region is encountered, the master thread 
creates a team of threads (fork/join model).

• Every thread executes the statements which are inside the parallel 
region

• At the end of the parallel region, the master thread waits for the other 
threads to finish, and continues executing the next statements
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Shared and private data

• Inside a parallel region, variables can either be shared or private.

• All threads see the same copy of shared variables. 

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these are invisible 

to other threads.

• A private variable can only be read or written by its own thread.



Parallel loops

• In a parallel region, all threads execute the same code

• OpenMP also has directives which indicate that work should be divided up 

between threads, not replicated.

• this is called worksharing

• Since loops are the main source of parallelism in many applications, OpenMP 

has extensive support for parallelising loops.

• The are a number of options to control which loop iterations are executed by 

which threads.

• It is up to the programmer to ensure that the iterations of a parallel loop are 

independent. 

• Only loops where the iteration count can be computed before the execution of 

the loop begins can be parallelised in this way. 



Synchronisation
• The main synchronisation concepts used in OpenMP are: 

• Barrier

• all threads must arrive at a barrier before any thread can proceed past it

• e.g. delimiting phases of computation

• Critical region

• a section of code which only one thread at a time can enter

• e.g. modification of shared data structures

• Atomic update

• an update to a variable which can be performed only by one thread at a time

• e.g. modification of shared variables

• Master region

• a section of code executed by one thread only

• e.g. initialisation, writing a file



Brief history of OpenMP 

• Historical lack of standardisation in shared memory directives. 

• each hardware vendor provided a different API

• mainly directive based

• almost all for Fortran

• hard to write portable code

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes 
most major vendors (and some academic organisations, including 
EPCC).

• OpenMP Fortran standard released October 1997, minor revision (1.1) 
in November 1999. Major revision (2.0) in November 2000.



History (cont.)
• OpenMP C/C++ standard released October 1998. Major revision (2.0) in 

March 2002.

• Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.

• no new features, but extensive rewriting and clarification

• Version 3.0 released in May 2008

• new features, including tasks, better support for loop parallelism and 

nested parallelism

• only recently available in some compilers

• Version 3.1 released in June 2011

• corrections and some minor new features



OpenMP resources
• Web site:

www.openmp.org

• Official web site: language specifications, links to compilers and tools, 
mailing lists

• Book:
• “Using OpenMP: Portable Shared Memory Parallel Programming” 

Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022 

• however, does not contain OpenMP 3.0/3.1 features



Compiling and running OpenMP 

programs

• OpenMP is built-in to most of the compilers you are likely to use. 

• To compile an OpenMP program you usually need to add a 

(compiler-specific) flag to your compile and link commands. 
• -fopenmp for gcc/gfortran
• -openmp for Intel compilers
• no flags for Cray compilers as it is enabled by default

• The number of threads which will be used is determined at runtime 
by the OMP_NUM_THREADS environment variable
• set this before you run the program 
• e.g. export OMP_NUM_THREADS=4

• Run in the same way you would a sequential program 
• type the name of the executable



Running

To run an OpenMP program interactively:

• Set the number of threads using the environment variable 
OMP_NUM_THREADS

e.g.   export OMP_NUM_THREADS=8 (bash/ksh)

or      setenv OMP_NUM_THREADS 8 (csh/tcsh)

• Can run just as you would a sequential program.  



Running in the ARCHER batch system
• ARCHER is configured as a front end (login nodes) and a back end 

(compute nodes)

• The frontend is for interactive use, the backend for batch jobs only. 
Development and debugging should be done on the frontend.

• To login in: ssh –X guestXX@login.archer.ac.uk

• Change to the work directory: cd /work/y14/y14/guestXX/

• For performance measurements, run on the backend in a batch 
queue (we have reserved queues for courses), e.g.:
cp –i ompbatch.pbs myprogram.pbs

qsub –q course1 myprogram.pbs



Running (cont.)

• The number of threads must be set inside the script file:

export OMP_NUM_THREADS=4

• On archer, we have to use the job launcher program aprun

• launch a single process on one node

• OpenMP program will spawn multiple threads at runtime



Exercise

Hello World

• Aim: to compile and run a trivial program.

• Vary the number of threads using the OMP_NUM_THREADS 

environment variable. 

• Run the code several times - is the output always the same? 


