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What is Apache Spark 
• Open-source distributed data analytics platform 
• Runs on a standalone cluster or on Hadoop (and others) 
•  Large community 
• Many libraries that are actively being developed 

•  MLlib: machine learning 
•  DataFrames, Datasets, and SQL 
•  Structured Streaming 
•  GraphX 
•  SparkR 

• Many third-party libraries 



How to use it 
•  Interactive mode for testing and development 

• On local machine using shared memory and one or 
more cores 

• Or interacting with cluster 

• Job submission to a cluster manager 
• Spark Standalone cluster 
• Hadoop YARN 
• Apache Mesos 
• Amazon EC2 



More details 
• Provides access to many data sources 

•  HDFS 
•  HBase 
•  S3 
•  … 

• Distributes parallel computations across a cluster 
• Data is cached reliably 

•  Can be faster than Hadoop 
•  Improves the performance of iterative algorithms 

• Runs on Java VM 



Java, Scala, Python, R 
• Spark is written in Scala 

•  http://www.scala-lang.org/  
•  Compiled to Java byte code 
•  Runs on the JVM, i.e. supported on any platforms that run Java 

• Client libraries in various languages 
•  Scala, Java, Python and R 
•  May support only a subset depending on language 

•  Not all APIs available in Python yet 



Basic functionality 
• Resilient Distributed Dataset (RDD) 

•  Distributed collection of data items 
•  For example, lines from a text file, or 
•  Sensor data with timestamp and values 

• Apply a chain of: 
•  Transformations, e.g. 

•  map, filter, group-by, join 
•  Actions, e.g. 

•  reduce, count, save-as 

read 
text file 

filter 

save as 
text 

RDD 

RDD’ 



Transformations 
Transformation: Apply to create new RDDs.      
•  For example: 

•  map (e.g. convert value into another) 
•  filter (e.g. remove entries outside a valid range) 
•  join two datasets (match by key) 
•  union, intersection, distinct 
•  groupByKey, reduceByKey, aggregateByKey 
•  sortByKey 

map 

filter 

groupBy 

sort 

union 

map filter 
join 

sort sort 



Examples: Transformations 
• Map: e.g. x => 2*x 

•  1, 2, 3, 4, 5, 6, 7 => 2, 4, 6, 8, 10, 12, 14 

•  Filter: e.g. accept if x is between 0 and 100 
•  1, -12, 3, 234, 1, 65, 721 => 1, 3, 1, 65 

• Group by key:  
•  (A, 1), (A, 2), (B, 5), (B, 5), (C, 17) => (A, [1,2]), (B, [5, 5]), (C, [17])  

• Reduce by key: e.g. add values for each key 
•  (A, 1), (A, 2), (B, 5), (B, 5), (C, 17) => (A, 3), (B, 10), (C, 17) 



Actions 
Action: Apply to materialise an RDD and create 
an output dataset. May have side effects.  
• For example: 

•  reduce: take two arguments and return one 
•  count, countByKey 
•  take, takeSample, takeOrdered, first 
•  saveAsTextFile, saveAsSequenceFile: save results to a 

file or database 
•  foreach: apply a function to each element 



Example 
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Customers and Orders 

ID Name 
1 Alice 
2 Bob 
3 Charlie 

ID Customer Order Value 
1 1 14 
2 2 2 
3 1 21 
4 3 5 
5 3 9 
6 3 25 

Table 1: Customers Table 2: Orders



Join

Customers Orders

(customer_id, value)

(id, name)

Reduce
byKey

(id, order_value)

Filter

(id, name)

(id, sum)

Collect



filtered_cust = cust_rdd.filter(
lambda (id,name): name in ['Alice', 'Charlie'])

[(1, 'Alice'), (3, 'Charlie')]

[(1, 'Alice'), (2, 'Bob'), (3, 'Charlie')]



orders_rdd

[(1, 14), 

(2, 2), 

(1, 21), 

(3, 5), 

(3, 9), 

(3, 25)] 
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joined = filtered_cust.join(orders_rdd) 
 

[(1, ('Alice', 14)), (1, ('Alice', 21)), 

(3, ('Charlie', 5)), (3, ('Charlie', 9)), 

(3, ('Charlie', 25))] 

[(1, 14), (2, 2), 
(1, 21), (3, 5), 
(3, 9), (3, 25)] 

[(1, 'Alice'), 

(3, 'Charlie')] 
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mapped = joined.map(lambda (k, (v1,v2)): (k, v2))

[(1, ('Alice', 14)), (1, ('Alice', 21)), 

(3, ('Charlie', 5)), (3, ('Charlie', 9)), 

(3, ('Charlie', 25))] 

[(1, 14), (1, 21), (3, 5), (3, 9), (3, 25)] 



sums = mapped.reduceByKey(lambda a, b: a+b)
sums.collect()

[(1, 35), (3, 39)] 

[(1, 14), (1, 21),  

 (3, 5), (3, 9), (3, 25)] 



Execution 
•  Transformations are lazy: No results are computed until 

an action is performed 
• Computations are broken into tasks and distributed to 

worker nodes 
•  Intermediate results are spilled to disk automatically if 

necessary 
• You can explicitly cache datasets for reuse 



Job submission to a cluster 
• Submit job to the master 

•  Master listening on host:port 

• Master distributes tasks to the worker nodes 
• Monitor progress in the web UI 

•  Task distribution 
•  Memory use 



Spark Standalone cluster 
To run standalone cluster: 
• Start the master node 
• Start the worker nodes 

•  Workers automatically register with the master (given the URL) 

• Master node receives job submissions and distributes 
tasks to worker nodes 



Running on Hadoop YARN 
• Requires a Hadoop YARN cluster 
•  Takes advantage of the functionalities provided by a 

Hadoop cluster  
•  Node management and configuration 
•  Distributed file system 
•  Data replication 
•  Fault recovery 



Example application 
on YARN 

“Word Count” 



Spark libraries 
• MLlib 
• Spark Streaming 
• GraphX 
• SparkSQL and DataFrames 



MLlib 
• Machine learning library 
•  Functionality: 

•  Basic statistics 
•  Classification (Naïve Bayes, decision trees, …) 
•  Clustering (k-means, Gaussian mixture, …) 
•  And many others! 

•  Frequent updates with new features 



MLlib examples 

summary = Statistics.colStats(data)
print(summary.mean())
print(summary.variance())

Statistics.corr(data, method="pearson")

clusters = KMeans.train(data, 2,
maxIterations=10, runs=10,
initializationMode="random")

Basic statistics: 
 

Correlation: 

Classification: 



SparkSQL and DataFrames 
• View datasets as relational tables 
• Define a schema of columns for a dataset 
• Perform SQL queries 
• DataFrame functionality is very popular in R 



Spark Streaming 

• Data analysis of streaming data 
• Aimed at high-throughput and fault-tolerant stream 

processing 
• Based on discretized streams (Dstream) containing 

batches of input data 
•  Stream of datasets that contain data from a certain interval (or 

“window”) 

•  Some APIs currently not available  
in Python 



GraphX 
• Graph Processing Library 
• Defines a graph abstraction 

•  Directed multi-graph  
•  Properties attached to each edge and vertex 
•  RDDs for edges and vertices 

• Graph operations 
•  numEdges, numVertices, … 
•  triangleCount, connectedComponents 
•  collectNeighbors 
•  joinVertices 
•  … 



Summary 
• Apache Spark is a framework for data analysis 
• Easy to learn 
• Widely used 
• Active user community 
• Comes with a set of machine learning libraries 

•  Actively being developed and extended 



Spark Demo: k-means clustering 
•  Interactive PySpark on your local machine 
•  Interactive PySpark running on a Hadoop cluster 
•  Job submission to a Hadoop cluster 

https://github.com/akrause2014/DataScienceCourse/ 



$ PYSPARK_DRIVER_PYTHON=jupyter 
PYSPARK_DRIVER_PYTHON_OPTS="notebook"  bin/pyspark 
 
[I 12:46:02.365 NotebookApp] Serving notebooks from local directory:  
[I 12:46:02.365 NotebookApp] 0 active kernels  
[I 12:46:02.365 NotebookApp] The Jupyter Notebook is running at: http://
localhost:8888/?
token=c5192c759583f0a499eab119e7d5ed4fbdb6fe5bd56df971 
[I 12:46:02.365 NotebookApp] Use Control-C to stop this server and shut 
down all kernels (twice to skip confirmation). 
[C 12:46:02.366 NotebookApp]  
     
    Copy/paste this URL into your browser when you connect for the first 
time, to login with a token: 
        http://localhost:8888/?
token=c5192c759583f0a499eab119e7d5ed4fbdb6fe5bd56df971 


