
Data Analytics with HPC

Apache Spark

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
• What is Apache Spark
• How to use it
• Example scenario
• Available libraries
• Demo

What is Apache Spark
• Open-source distributed data analytics platform
• Runs on a standalone cluster or on Hadoop (and others)
•  Large community
• Many libraries that are actively being developed

•  MLlib: machine learning
•  DataFrames, Datasets, and SQL
•  Structured Streaming
•  GraphX
•  SparkR

• Many third-party libraries

How to use it
•  Interactive mode for testing and development

• On local machine using shared memory and one or
more cores

• Or interacting with cluster

• Job submission to a cluster manager
• Spark Standalone cluster
• Hadoop YARN
• Apache Mesos
• Amazon EC2

More details
• Provides access to many data sources

•  HDFS
•  HBase
•  S3
•  …

• Distributes parallel computations across a cluster
• Data is cached reliably

•  Can be faster than Hadoop
•  Improves the performance of iterative algorithms

• Runs on Java VM

Java, Scala, Python, R
• Spark is written in Scala

•  http://www.scala-lang.org/
•  Compiled to Java byte code
•  Runs on the JVM, i.e. supported on any platforms that run Java

• Client libraries in various languages
•  Scala, Java, Python and R
•  May support only a subset depending on language

•  Not all APIs available in Python yet

Basic functionality
• Resilient Distributed Dataset (RDD)

•  Distributed collection of data items
•  For example, lines from a text file, or
•  Sensor data with timestamp and values

• Apply a chain of:
•  Transformations, e.g.

•  map, filter, group-by, join
•  Actions, e.g.

•  reduce, count, save-as

read
text file

filter

save as
text

RDD

RDD’

Transformations
Transformation: Apply to create new RDDs.
•  For example:

•  map (e.g. convert value into another)
•  filter (e.g. remove entries outside a valid range)
•  join two datasets (match by key)
•  union, intersection, distinct
•  groupByKey, reduceByKey, aggregateByKey
•  sortByKey

map

filter

groupBy

sort

union

map filter
join

sort sort

Examples: Transformations
• Map: e.g. x => 2*x

•  1, 2, 3, 4, 5, 6, 7 => 2, 4, 6, 8, 10, 12, 14

•  Filter: e.g. accept if x is between 0 and 100
•  1, -12, 3, 234, 1, 65, 721 => 1, 3, 1, 65

• Group by key:
•  (A, 1), (A, 2), (B, 5), (B, 5), (C, 17) => (A, [1,2]), (B, [5, 5]), (C, [17])

• Reduce by key: e.g. add values for each key
•  (A, 1), (A, 2), (B, 5), (B, 5), (C, 17) => (A, 3), (B, 10), (C, 17)

Actions
Action: Apply to materialise an RDD and create
an output dataset. May have side effects.
• For example:

•  reduce: take two arguments and return one
•  count, countByKey
•  take, takeSample, takeOrdered, first
•  saveAsTextFile, saveAsSequenceFile: save results to a

file or database
•  foreach: apply a function to each element

Example

Join

Customers Orders

(customer_id, value)

(id, name)

Reduce
byKey

(id, order_value)

Filter

(id, name)

(id, sum)

Collect

Customers and Orders

ID Name
1 Alice
2 Bob
3 Charlie

ID Customer Order Value
1 1 14
2 2 2
3 1 21
4 3 5
5 3 9
6 3 25

Table 1: Customers Table 2: Orders

Join

Customers Orders

(customer_id, value)

(id, name)

Reduce
byKey

(id, order_value)

Filter

(id, name)

(id, sum)

Collect

filtered_cust = cust_rdd.filter(
lambda (id,name): name in ['Alice', 'Charlie'])

[(1, 'Alice'), (3, 'Charlie')]

[(1, 'Alice'), (2, 'Bob'), (3, 'Charlie')]

orders_rdd

[(1, 14),

(2, 2),

(1, 21),

(3, 5),

(3, 9),

(3, 25)]

Join

Customers Orders

(customer_id, value)

(id, name)

Reduce
byKey

(id, order_value)

Filter

(id, name)

(id, sum)

Collect

joined = filtered_cust.join(orders_rdd)

[(1, ('Alice', 14)), (1, ('Alice', 21)),

(3, ('Charlie', 5)), (3, ('Charlie', 9)),

(3, ('Charlie', 25))]

[(1, 14), (2, 2),
(1, 21), (3, 5),
(3, 9), (3, 25)]

[(1, 'Alice'),

(3, 'Charlie')]

Join

Customers Orders

(customer_id, value)

(id, name)

Reduce
byKey

(id, order_value)

Filter

(id, name)

(id, sum)

Collect

mapped = joined.map(lambda (k, (v1,v2)): (k, v2))

[(1, ('Alice', 14)), (1, ('Alice', 21)),

(3, ('Charlie', 5)), (3, ('Charlie', 9)),

(3, ('Charlie', 25))]

[(1, 14), (1, 21), (3, 5), (3, 9), (3, 25)]

sums = mapped.reduceByKey(lambda a, b: a+b)
sums.collect()

[(1, 35), (3, 39)]

[(1, 14), (1, 21),

 (3, 5), (3, 9), (3, 25)]

Execution
•  Transformations are lazy: No results are computed until

an action is performed
• Computations are broken into tasks and distributed to

worker nodes
•  Intermediate results are spilled to disk automatically if

necessary
• You can explicitly cache datasets for reuse

Job submission to a cluster
• Submit job to the master

•  Master listening on host:port

• Master distributes tasks to the worker nodes
• Monitor progress in the web UI

•  Task distribution
•  Memory use

Spark Standalone cluster
To run standalone cluster:
• Start the master node
• Start the worker nodes

•  Workers automatically register with the master (given the URL)

• Master node receives job submissions and distributes
tasks to worker nodes

Running on Hadoop YARN
• Requires a Hadoop YARN cluster
•  Takes advantage of the functionalities provided by a

Hadoop cluster
•  Node management and configuration
•  Distributed file system
•  Data replication
•  Fault recovery

Example application
on YARN

“Word Count”

Spark libraries
• MLlib
• Spark Streaming
• GraphX
• SparkSQL and DataFrames

MLlib
• Machine learning library
•  Functionality:

•  Basic statistics
•  Classification (Naïve Bayes, decision trees, …)
•  Clustering (k-means, Gaussian mixture, …)
•  And many others!

•  Frequent updates with new features

MLlib examples

summary = Statistics.colStats(data)
print(summary.mean())
print(summary.variance())

Statistics.corr(data, method="pearson")

clusters = KMeans.train(data, 2,
maxIterations=10, runs=10,
initializationMode="random")

Basic statistics:

Correlation:

Classification:

SparkSQL and DataFrames
• View datasets as relational tables
• Define a schema of columns for a dataset
• Perform SQL queries
• DataFrame functionality is very popular in R

Spark Streaming

• Data analysis of streaming data
• Aimed at high-throughput and fault-tolerant stream

processing
• Based on discretized streams (Dstream) containing

batches of input data
•  Stream of datasets that contain data from a certain interval (or

“window”)

•  Some APIs currently not available
in Python

GraphX
• Graph Processing Library
• Defines a graph abstraction

•  Directed multi-graph
•  Properties attached to each edge and vertex
•  RDDs for edges and vertices

• Graph operations
•  numEdges, numVertices, …
•  triangleCount, connectedComponents
•  collectNeighbors
•  joinVertices
•  …

Summary
• Apache Spark is a framework for data analysis
• Easy to learn
• Widely used
• Active user community
• Comes with a set of machine learning libraries

•  Actively being developed and extended

Spark Demo: k-means clustering
•  Interactive PySpark on your local machine
•  Interactive PySpark running on a Hadoop cluster
•  Job submission to a Hadoop cluster

https://github.com/akrause2014/DataScienceCourse/

$ PYSPARK_DRIVER_PYTHON=jupyter
PYSPARK_DRIVER_PYTHON_OPTS="notebook" bin/pyspark

[I 12:46:02.365 NotebookApp] Serving notebooks from local directory:
[I 12:46:02.365 NotebookApp] 0 active kernels
[I 12:46:02.365 NotebookApp] The Jupyter Notebook is running at: http://
localhost:8888/?
token=c5192c759583f0a499eab119e7d5ed4fbdb6fe5bd56df971
[I 12:46:02.365 NotebookApp] Use Control-C to stop this server and shut
down all kernels (twice to skip confirmation).
[C 12:46:02.366 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first
time, to login with a token:
 http://localhost:8888/?
token=c5192c759583f0a499eab119e7d5ed4fbdb6fe5bd56df971

