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Introduction 

• Random numbers are frequently used in many types of 

computer simulation 

• Frequently as part of a sampling process: 

– Generate a representative sample of a large population by choosing 

members at random. 

– Monte-carlo integration is approximating an integral by sampling the 

function at random points. 

– Even when simulating a stochastic process (random walk/random 

events etc.) we are sampling the possible evolutions of the system. 

2 



What is Random anyway 

• “Random” is actually a very difficult philosophical concept. 

• However in most cases the real requirement is “unbiased 

sampling” which is more straightforward. 
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Distribution 

• Random numbers are chosen from a probability distribution. 

• For random integers each possible result X occurs with a 

probability P(X) 

• For random real numbers R this becomes a probability 

density P(R) 

– Chance of the results occurring within a region is the integral of the 

probability density over that region. 

– Most generators are designed to generate a “uniform” distribution. 

– P( R ) = 1    0<R<1 

– P( R ) = 0   elsewhere 

– Other distributions then generated from this 
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Resolution 

• However computers use floating point numbers not true real 

numbers. 

– Only a finite set of possible values can be represented. 

– Any random “real” number must come from this set. 

• Most techniques generate an even smaller sub-set of values 

e.g. 

– R = X/N   where X is a random integer between 0 and N 

– 1/N is the resolution of that generator. 

• Generated distribution is only an approximation to uniform. 

– May bias the results if you are not careful 

– Always worth understanding the resolution of the generator you use. 
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Correlations 

• True Random numbers are also un-correlated with each 

other. 

• The probability of getting a particular set of random results 

should be the product of the probabilities of each result in 

isolation. 
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Hardware Random Number Generators 

• You can build hardware random number generators. 

– These work by taking measurements of some random physical 

process 

– Thermal noise 

– Quantum processes. 

– Problems 

– Debugging is very hard as can never reproduce the same 

program run twice. 

– May still suffer from limited resolution 

– Often quite slow. 

– May not result in any visible improvement in quality of results. 

– More commonly used in cryptographic applications. 
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Pseudo Random Numbers 

• Pseudo Random Numbers are a deterministic sequence of 

numbers generated by some algorithm that are used in-place 

of true random numbers. 

• Aim is for the sequence to share enough of the statistical 

properties of true random numbers to not bias the results. 

• PRNs are NOT random. It is always possible to come up with 

some test that demonstrates this. 
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PRNG Quality 

• Quality of a PRNG sequence depends on the intended use. 

– Each use case only depends on some of the statistical properties of 

true random numbers. 

– Some generators may introduce problems for some calculations but 

not others. 

• In practice, algorithms exist that can stand in for true random 

numbers for most common types of simulation. 

• Unfortunately language default generators are often fairly 

poor. 
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Structure of a PRNG 

• Logically PRNGs consist of: 

– An internal state           𝑆𝑖 

– An update transform    𝑇 𝑆𝑖 𝑆𝑖+1 that maps one state onto the next 

– An output transform    𝐹 𝑆𝑖 𝑋𝑖     that generates the next number in 

the PRNG sequence from the current state. 

• Algorithms are rated on the statistical properties of the output 

sequence 

– Speed of execution and memory consumption are also important. 

• Different algorithms may generate the same PRNG 

sequence via different state representations and transforms. 
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Seeding the Generator 

• Also need some mechanism of initialising the starting state. 

• Traditional algorithms only used a single word of state so 

many programs assume the generator is initialised using a 

single integer. 

• If you don’t set a starting seed you either: 

1. Get the same sequence every time you run the program. 

2. The generator seeds from the current time (makes debugging hard). 

• If your program checkpoints remember to save the RNG 

state so you can restart exactly where you left off. 

– Write tests to check this! 
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Period of a generator 

• There are only a finite number of possible states. 

• Eventually generator will return to its starting state. 

• The update transform should generate a cyclic group 

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 = 𝐼 

• The size of this group is the period of the generator.  

• It is also the number of valid states. 

• If the update transform does not form a cyclic group then state 

information can be lost initially but the generator will eventually settle 

down into a cycle of recurring states. 
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How state is stored 

• In principle you could store the position in the sequence. 

– Update transform is just an increment i → i + 1 

– All the randomness is in the output-transform. 

– Need very expensive output-transform to have good randomness 

properties. 

• In practice use state representations that approximate 

random values and keep the output transform simple. 

– Even fairly simple (inexpensive) update transforms can have good 

randomness properties 
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PRNG Algorithms 

• PRNG Algorithms are deceptively simple. 

– Usually made up from a few simple operations. 

– Typically bitwise operations or modular arithmetic. 

• Very tempting to try and “Improve” on published algorithms 

• DON’T DO THIS unless you really know what you are doing. 

• Each new algorithm requires theoretical (Number theory) 

analysis to determine the period of the generator. 

– Many other statistical properties can also be derived theoretically. 
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Selecting Generators 

• Most generators are selected based on the properties of 

small sets of consecutive numbers from the sequence. 

– { 𝑋𝑖 , 𝑋𝑖+1 }  approximate a pair of random number. 

• Non consecutive sets may appear less random.  

– E.g { 𝑋𝑖 , 𝑋𝑖+1024 }  

• Consecutive sets important for most applications (especially 

when used to generate non-uniform distributions) so this is a 

good heuristic for general purpose generators. 

• For a specific application may be other correlations that are 

equally important. 
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• Selection uses a combination of theory and statistical tests. 

• Statistical tests augment theory, not good enough by 

themselves.  
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Linear Congruential Generators 

•   𝑆𝑖+1 = 𝑎 𝑆𝑖 + 𝑐  𝑚𝑜𝑑  𝑀 

• If a, c and M chosen correctly, has M possible states. 

• If c = 0  then (M-1) possible states (S=0 always maps to 

itself). 
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Java.util.Random 

• Optimised for speed not quality 

– a = 0x5DEECE66DL 

– C = 0xBL 

– M = 248 

• Mod 248 is a bit-mask so very fast. 

• 47 bits of state in total. 

– However bit-n of the state has repeats with at most period 2𝑛+1 

– bit-0 period 2 

– bit-1  period 4 

– Only the high order bits repeat with any degree of randomness. 

– Class only exposes the top 32-bits to the user making it ok for quick 

and dirty use. 
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MRGs 

• LCG are a special case of Multiply Recursive Generators 

– 𝑆𝑛 = 𝑎1𝑆𝑛−1 + ⋯+ 𝑎𝑘𝑆𝑛−𝑘   𝑚𝑜𝑑  𝑀 

– Needs array of state variables. 

 

• Some number theory ... 

 

– If 𝑀 = 𝑃𝑞  with P prime then maximum period is 𝑃𝑞−1(𝑃𝑘 − 1). 

–  Special values of { 𝑎𝑘  } generate full period if M is prime.  

 

• Many other common generators are special cases of these. 
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Other Common generators 

• LFSR 

– Linear Feedback Shift Register 

– M=2 

• Lagged Fibonacci Generators 

– Only 2 Values of { 𝑎𝑘 } non-zero so faster then the general case. 

• Mersenne-Twister appears quite different but is equivalent to 

a MRG with M=2 and (2𝑘−1) a Mersenne prime. 
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Non uniform distributions 

• Non-uniform distributions are constructed out of (multiple) 

normally distributed values.  

• For any probability distribution 𝑝 𝑥  

–  𝑝(𝑥)
𝑚𝑎𝑥

𝑚𝑖𝑛
= 1 

– Selecting small areas under the curve uniformly is the same as 

selecting 𝑥 with probability 𝑝(𝑥) 

– Inverse transform sampling. 

– Divide area into thin strips of equal area and select strip at 

random. 

– Rejection sampling 

– Choose x,y points at random but reject points above the curve i.e. 

𝑦 > 𝑝 𝑥  
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Simple example 

• p(x) = 3 x 2 
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Inverse transform sampling 

• Generally quite hard to do: 

– Generate uniform deviate U. 

– Return 𝑥 ∶   𝑝 𝑦 𝑑𝑦 = 𝑈
𝑥

𝑚𝑖𝑛
 

• Only analytically solvable for certain distributions. 

– e.g for p(x) = 3 x 2  

– x = 3 U (cube root of U) 

– 100,000 samples & 100 bins 

 

  call random_number(myrng) 

  myrng = myrng**(1.0/3.0) 
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Rejection sampling 

• Only need to be able to evaluate p(x). 

– Needs special handling for unbounded distributions. 

 

• e.g for p(x) = 3 x 2 

 

  call random_number(myrng1) 

  call random_number(myrng2) 

  myrng2 = 3.0*myrng2 

  if (myrng2 < 3.0*myrng1**2) 

    myrng = mynrng1 
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Generating Gaussians 

• Most commonly required non-uniform distribution is the 

normal / gaussian distribution  

– 𝑃 𝑥 =  
1

𝜎 2𝜋
𝑒
−𝑥2

2𝜎2  

 

-e.g for s = 0.5 
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Box Muller 

• Generates pairs of gaussians from pairs of uniform. 

– Generate 2 Uniform random numbers U,V  from (0:1] 

– 𝑋 =  −2 ln𝑈 . cos 2π 𝑉  

– Y= −2 ln𝑈 . 𝑠𝑖𝑛 2π 𝑉  

• Generally quite slow due to math library functions. 

• With care an be vectorised so may be better algorithm for 

GPGPU. 
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Polar method 

• Variation of box-muller that uses accept-reject step instead 

of trig functions. 

1. 𝑎 = 2 𝑈 − 1  

2. 𝑏 = 2 𝑉 − 1 

3. 𝑠 =  𝑎2 + 𝑏2 

4. If s > 1 goto (1) 

5. 𝑋 = 𝑎 
−2 ln (𝑠)

𝑠
 

6. Y= 𝑏 
−2 ln (𝑠)

𝑠
 

• Usually faster overall but accept/reject inhibits vectorisation 
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Summary 

• (Pseudo) random numbers are key to many algorithms 

– a number of high quality algorithms exist 

 

• Typically generate number in the range [0.0, 1.0) 

• Are often transformed to other distributions 

– analytically 

– using accept-reject stage 

 

• Repeatability is a key requirement 

– necessary to test correctness of any computation 
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