

Random

Number

Generation
Stephen Booth

David Henty

Introduction

• Random numbers are frequently used in many types of

computer simulation

• Frequently as part of a sampling process:

– Generate a representative sample of a large population by choosing

members at random.

– Monte-carlo integration is approximating an integral by sampling the

function at random points.

– Even when simulating a stochastic process (random walk/random

events etc.) we are sampling the possible evolutions of the system.

2

What is Random anyway

• “Random” is actually a very difficult philosophical concept.

• However in most cases the real requirement is “unbiased

sampling” which is more straightforward.

13/06/2017 3

Distribution

• Random numbers are chosen from a probability distribution.

• For random integers each possible result X occurs with a

probability P(X)

• For random real numbers R this becomes a probability

density P(R)

– Chance of the results occurring within a region is the integral of the

probability density over that region.

– Most generators are designed to generate a “uniform” distribution.

– P(R) = 1 0<R<1

– P(R) = 0 elsewhere

– Other distributions then generated from this

13/06/2017 4

Resolution

• However computers use floating point numbers not true real

numbers.

– Only a finite set of possible values can be represented.

– Any random “real” number must come from this set.

• Most techniques generate an even smaller sub-set of values

e.g.

– R = X/N where X is a random integer between 0 and N

– 1/N is the resolution of that generator.

• Generated distribution is only an approximation to uniform.

– May bias the results if you are not careful

– Always worth understanding the resolution of the generator you use.

13/06/2017 5

Correlations

• True Random numbers are also un-correlated with each

other.

• The probability of getting a particular set of random results

should be the product of the probabilities of each result in

isolation.

13/06/2017 6

Hardware Random Number Generators

• You can build hardware random number generators.

– These work by taking measurements of some random physical

process

– Thermal noise

– Quantum processes.

– Problems

– Debugging is very hard as can never reproduce the same

program run twice.

– May still suffer from limited resolution

– Often quite slow.

– May not result in any visible improvement in quality of results.

– More commonly used in cryptographic applications.

13/06/2017 7

Pseudo Random Numbers

• Pseudo Random Numbers are a deterministic sequence of

numbers generated by some algorithm that are used in-place

of true random numbers.

• Aim is for the sequence to share enough of the statistical

properties of true random numbers to not bias the results.

• PRNs are NOT random. It is always possible to come up with

some test that demonstrates this.

13/06/2017 8

PRNG Quality

• Quality of a PRNG sequence depends on the intended use.

– Each use case only depends on some of the statistical properties of

true random numbers.

– Some generators may introduce problems for some calculations but

not others.

• In practice, algorithms exist that can stand in for true random

numbers for most common types of simulation.

• Unfortunately language default generators are often fairly

poor.

13/06/2017 9

Structure of a PRNG

• Logically PRNGs consist of:

– An internal state 𝑆𝑖

– An update transform 𝑇 𝑆𝑖 𝑆𝑖+1 that maps one state onto the next

– An output transform 𝐹 𝑆𝑖 𝑋𝑖 that generates the next number in

the PRNG sequence from the current state.

• Algorithms are rated on the statistical properties of the output

sequence

– Speed of execution and memory consumption are also important.

• Different algorithms may generate the same PRNG

sequence via different state representations and transforms.

13/06/2017 10

Seeding the Generator

• Also need some mechanism of initialising the starting state.

• Traditional algorithms only used a single word of state so

many programs assume the generator is initialised using a

single integer.

• If you don’t set a starting seed you either:

1. Get the same sequence every time you run the program.

2. The generator seeds from the current time (makes debugging hard).

• If your program checkpoints remember to save the RNG

state so you can restart exactly where you left off.

– Write tests to check this!

13/06/2017 11

Period of a generator

• There are only a finite number of possible states.

• Eventually generator will return to its starting state.

• The update transform should generate a cyclic group

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 = 𝐼

• The size of this group is the period of the generator.

• It is also the number of valid states.

• If the update transform does not form a cyclic group then state

information can be lost initially but the generator will eventually settle

down into a cycle of recurring states.

13/06/2017 12

How state is stored

• In principle you could store the position in the sequence.

– Update transform is just an increment i → i + 1

– All the randomness is in the output-transform.

– Need very expensive output-transform to have good randomness

properties.

• In practice use state representations that approximate

random values and keep the output transform simple.

– Even fairly simple (inexpensive) update transforms can have good

randomness properties

13/06/2017 13

PRNG Algorithms

• PRNG Algorithms are deceptively simple.

– Usually made up from a few simple operations.

– Typically bitwise operations or modular arithmetic.

• Very tempting to try and “Improve” on published algorithms

• DON’T DO THIS unless you really know what you are doing.

• Each new algorithm requires theoretical (Number theory)

analysis to determine the period of the generator.

– Many other statistical properties can also be derived theoretically.

13/06/2017 14

Selecting Generators

• Most generators are selected based on the properties of

small sets of consecutive numbers from the sequence.

– { 𝑋𝑖 , 𝑋𝑖+1 } approximate a pair of random number.

• Non consecutive sets may appear less random.

– E.g { 𝑋𝑖 , 𝑋𝑖+1024 }

• Consecutive sets important for most applications (especially

when used to generate non-uniform distributions) so this is a

good heuristic for general purpose generators.

• For a specific application may be other correlations that are

equally important.

13/06/2017 15

• Selection uses a combination of theory and statistical tests.

• Statistical tests augment theory, not good enough by

themselves.

13/06/2017 16

Linear Congruential Generators

• 𝑆𝑖+1 = 𝑎 𝑆𝑖 + 𝑐 𝑚𝑜𝑑 𝑀

• If a, c and M chosen correctly, has M possible states.

• If c = 0 then (M-1) possible states (S=0 always maps to

itself).

13/06/2017 17

Java.util.Random

• Optimised for speed not quality

– a = 0x5DEECE66DL

– C = 0xBL

– M = 248

• Mod 248 is a bit-mask so very fast.

• 47 bits of state in total.

– However bit-n of the state has repeats with at most period 2𝑛+1

– bit-0 period 2

– bit-1 period 4

– Only the high order bits repeat with any degree of randomness.

– Class only exposes the top 32-bits to the user making it ok for quick

and dirty use.

13/06/2017 18

MRGs

• LCG are a special case of Multiply Recursive Generators

– 𝑆𝑛 = 𝑎1𝑆𝑛−1 + ⋯+ 𝑎𝑘𝑆𝑛−𝑘 𝑚𝑜𝑑 𝑀

– Needs array of state variables.

• Some number theory ...

– If 𝑀 = 𝑃𝑞 with P prime then maximum period is 𝑃𝑞−1(𝑃𝑘 − 1).

– Special values of { 𝑎𝑘 } generate full period if M is prime.

• Many other common generators are special cases of these.

13/06/2017 19

Other Common generators

• LFSR

– Linear Feedback Shift Register

– M=2

• Lagged Fibonacci Generators

– Only 2 Values of { 𝑎𝑘 } non-zero so faster then the general case.

• Mersenne-Twister appears quite different but is equivalent to

a MRG with M=2 and (2𝑘−1) a Mersenne prime.

13/06/2017 20

Non uniform distributions

• Non-uniform distributions are constructed out of (multiple)

normally distributed values.

• For any probability distribution 𝑝 𝑥

– 𝑝(𝑥)
𝑚𝑎𝑥

𝑚𝑖𝑛
= 1

– Selecting small areas under the curve uniformly is the same as

selecting 𝑥 with probability 𝑝(𝑥)

– Inverse transform sampling.

– Divide area into thin strips of equal area and select strip at

random.

– Rejection sampling

– Choose x,y points at random but reject points above the curve i.e.

𝑦 > 𝑝 𝑥

13/06/2017 21

Simple example

• p(x) = 3 x 2

13/06/2017 22

1 0

0

3

Inverse transform sampling

• Generally quite hard to do:

– Generate uniform deviate U.

– Return 𝑥 ∶ 𝑝 𝑦 𝑑𝑦 = 𝑈
𝑥

𝑚𝑖𝑛

• Only analytically solvable for certain distributions.

– e.g for p(x) = 3 x 2

– x = 3 U (cube root of U)

– 100,000 samples & 100 bins

 call random_number(myrng)

 myrng = myrng**(1.0/3.0)

13/06/2017 23

Rejection sampling

• Only need to be able to evaluate p(x).

– Needs special handling for unbounded distributions.

• e.g for p(x) = 3 x 2

 call random_number(myrng1)

 call random_number(myrng2)

 myrng2 = 3.0*myrng2

 if (myrng2 < 3.0*myrng1**2)

 myrng = mynrng1

13/06/2017 24

Generating Gaussians

• Most commonly required non-uniform distribution is the

normal / gaussian distribution

– 𝑃 𝑥 =
1

𝜎 2𝜋
𝑒
−𝑥2

2𝜎2

-e.g for s = 0.5

13/06/2017 25

Box Muller

• Generates pairs of gaussians from pairs of uniform.

– Generate 2 Uniform random numbers U,V from (0:1]

– 𝑋 = −2 ln𝑈 . cos 2π 𝑉

– Y= −2 ln𝑈 . 𝑠𝑖𝑛 2π 𝑉

• Generally quite slow due to math library functions.

• With care an be vectorised so may be better algorithm for

GPGPU.

13/06/2017 26

Polar method

• Variation of box-muller that uses accept-reject step instead

of trig functions.

1. 𝑎 = 2 𝑈 − 1

2. 𝑏 = 2 𝑉 − 1

3. 𝑠 = 𝑎2 + 𝑏2

4. If s > 1 goto (1)

5. 𝑋 = 𝑎
−2 ln (𝑠)

𝑠

6. Y= 𝑏
−2 ln (𝑠)

𝑠

• Usually faster overall but accept/reject inhibits vectorisation

13/06/2017 27

Summary

• (Pseudo) random numbers are key to many algorithms

– a number of high quality algorithms exist

• Typically generate number in the range [0.0, 1.0)

• Are often transformed to other distributions

– analytically

– using accept-reject stage

• Repeatability is a key requirement

– necessary to test correctness of any computation

13/06/2017 28

