

Introduction to MC methods



Why Scientists like to gamble

Overview

- Integration by random numbers
 - Why?
 - How?
- Uncertainty, Sharply peaked distributions
 - Importance sampling
- Markov Processes and the Metropolis algorithm
- Examples
 - statistical physics
 - finance
 - weather forecasting

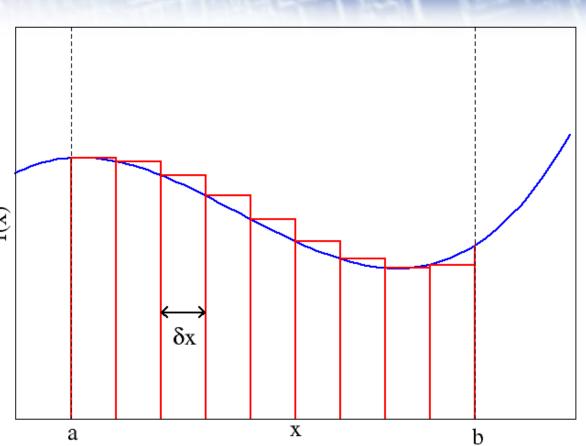
Integration – Area under a curve

Tile area with strips of height f(x) and width δx

Analytical:

$$\delta x \to dx \to 0$$

Numerical: integral replaced with a sum.



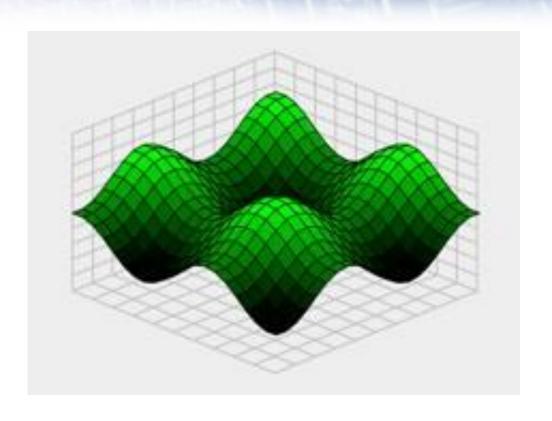
Uncertainty depends on size of δx (N points) and order of scheme, (Trapezoidal, Simpson, etc)

Multi-dimensional integration

1d integration requires *N* points

2d integration requires *N*²

Problem of dimension m requires N^m



Curse of dimensionality

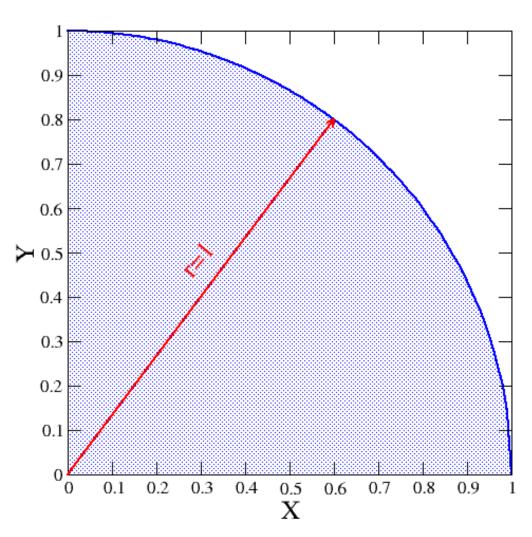
Calculating π by MC

Area of circle = πr^2 Area of unit square, s = 1Area of shaded arc, $c = \pi/4$

$$C = \pi/4$$

$$C/S = \pi/4$$

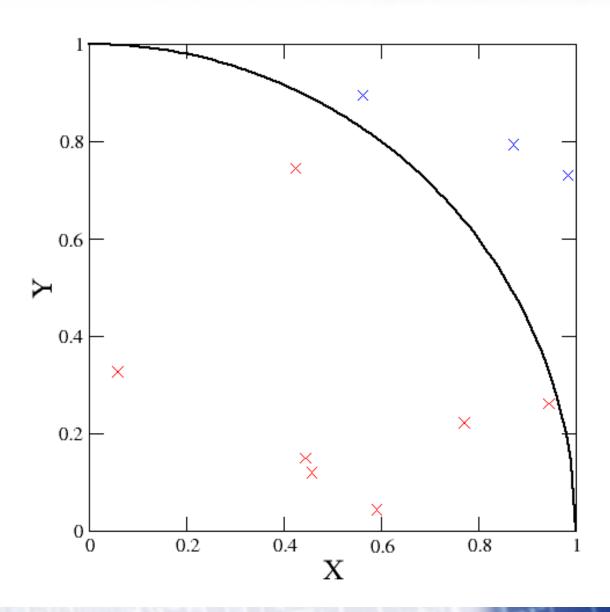
Estimate ratio of shaded to non-shaded area to determine π



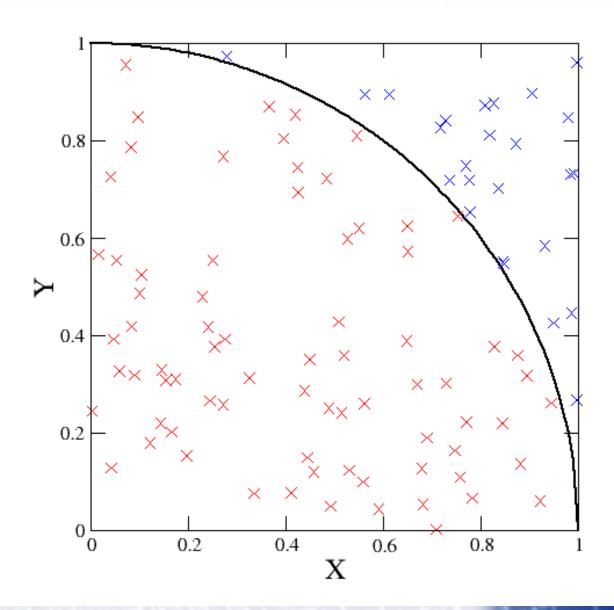
The algorithm

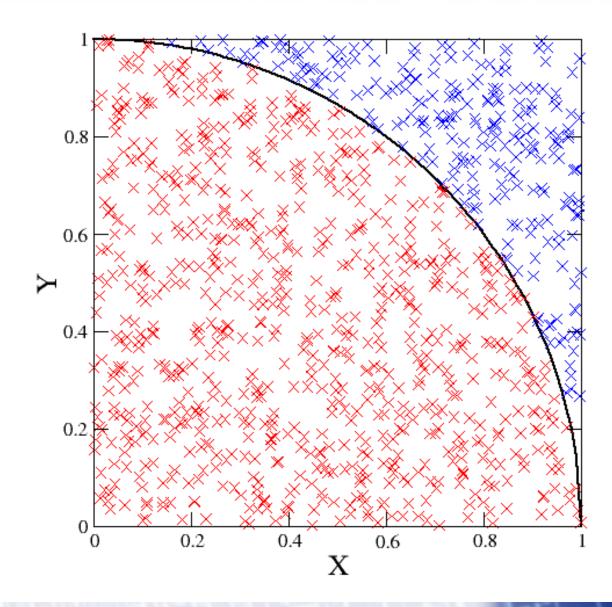
- y = rand()/RAND_MAX // float {0.0:1.0}
 x = rand()/RAND_MAX
 P=x*x + y*y // x*x + y*y = 1 eqn of circle
- If (P<=1)
 - isInCircle
- Else
 - IsOutCircle
- Pi=4*isInCircle / (isOutCircle+isInCircle)

$$\pi = 2.8$$



$$\pi = 3.0$$



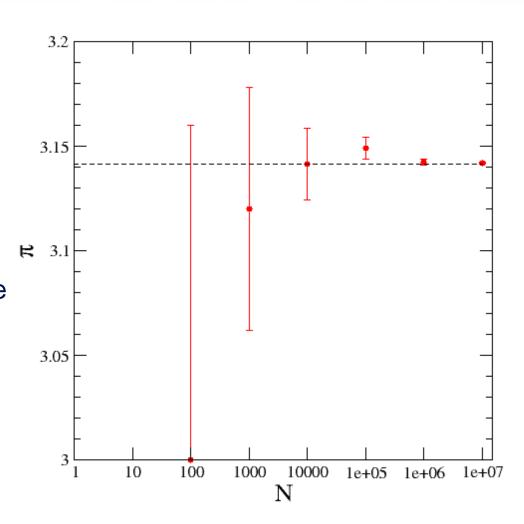


Estimating the uncertainty

- Stochastic method
 - -Statistical uncertainty
- Estimate this
 - -Run each measurement 100 times with different random number sequences
 - –Determine the variance of the distribution

$$\sigma^2 = \left(\overline{x} - x\right)^2 / k$$

- Standard deviation is σ
- How does the uncertainty scale with N, number of samples



Uncertainty versus N

Log-log plot

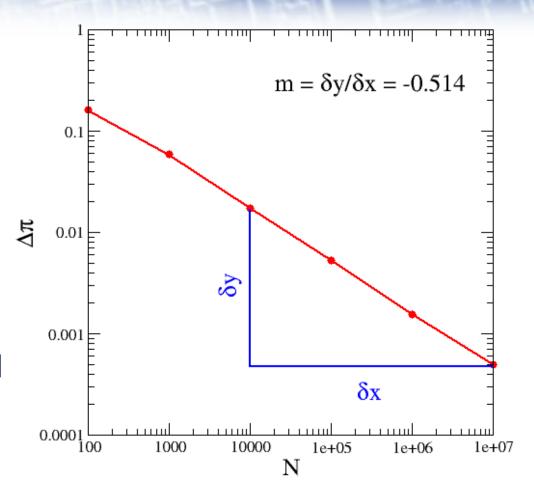
$$y = ax^b$$

$$\log y = \log a + b \log x$$

- Exponent b, is gradient
- b ≈ -0.5
- Law of large numbers and central limit theorem

$$\Delta \sim 1/\sqrt{N}$$

True for all MC methods



More realistic problem

- Imagine traffic model
 - can compute average velocity for a given density
 - this in itself requires random numbers ...
- What if we wanted to know average velocity of cars over a week
 - each day has a different density of cars (weekday, weekend, ...)
 - assume this has been measured (by a man with a clipboard)

Density	Frequency
0.3	4
0.5	1
0.7	2

Expectation values

Procedure:

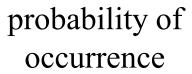
- run a simulation for each density to give average car velocity
- compute average over week by weighting by probability of that density

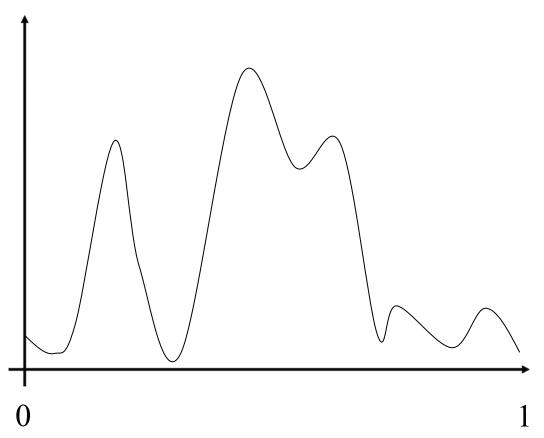
```
    i.e. velocity = 1/7* ( 4 * velocity(density = 0.3) + 1 * velocity(density = 0.5) + 2 * velocity(density = 0.7) )
```

• In general, for many states x_i (e.g. density) and some function $f(x_i)$ (e.g. velocity) need to compute expectation value <f>

$$\sum_{1}^{N} p(x_i) * f(xi)$$

Continuous distribution





density of traffic

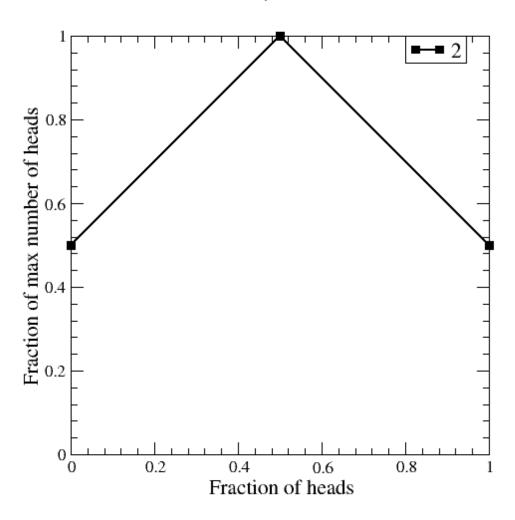
Aside: A highly dimensional system

A high dimensional system

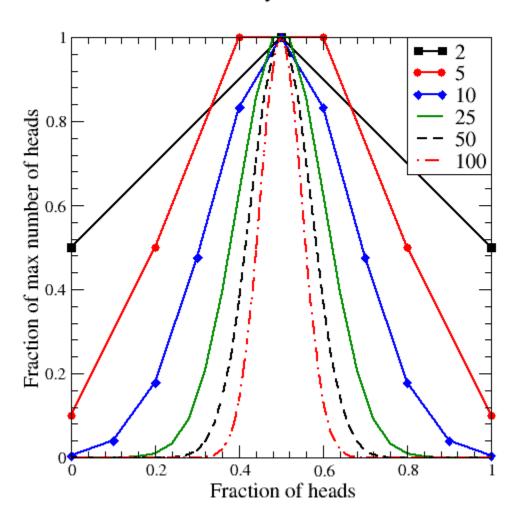
- 1 coin has 1 degree of freedom
 - Two possible states Heads and Tails
- 2 coins have 2 degrees of freedoms
 - Four possible micro-states, two of which are the same
 - Three possible states 1*HH, 2*HT, 1*TT
- n coins have n degrees of freedom
 - 2ⁿ microstates: n+1 states
 - Number of micro-states in each state is given by the binomial expansion coefficient

$$\Omega = 2^{n} = \sum_{r=0}^{n} {^{r}C_{n}H^{r}T^{n-r}} {^{r}C_{n} = \frac{n!}{r!(n-r)!}}$$

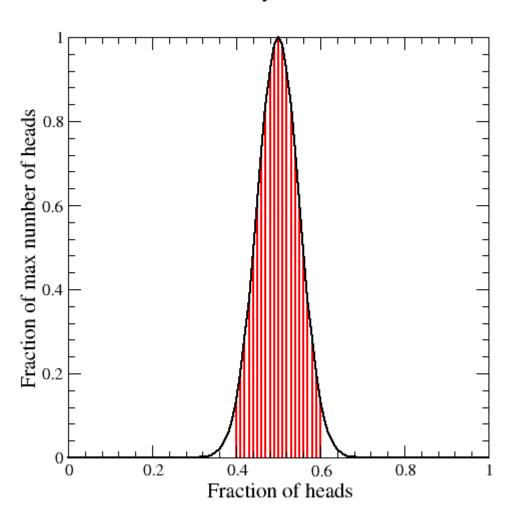
Probability distribution



Probability distribution



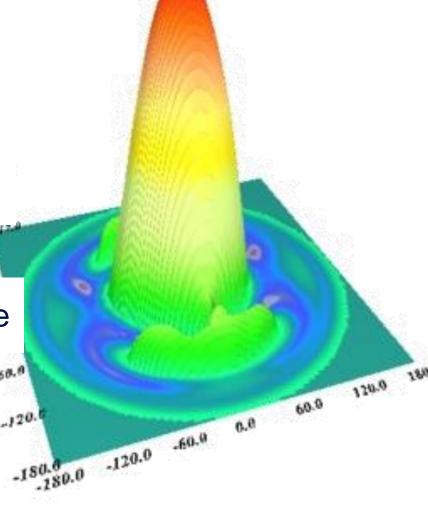
Probability distribution



 96.48% of all possible outcomes lie between 40 – 60 heads

Importance Sampling (i)

- The distribution is often sharply peaked
 - especially high-dimensional functions
 - often with fine structure detail
- Random sampling
 - $-p(x_i) \sim 0$ for many x_i
 - N large to resolve fine structure
- Importance sampling
 - generate weighted distribution
 - proportional to probability



Importance Sampling (ii)

With random (or uniform) sampling

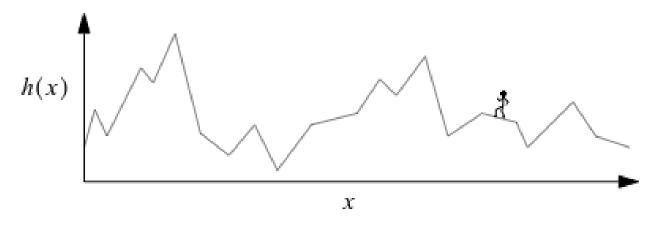
$$\langle f \rangle = \sum_{i=1}^{N} p(x_i) * f(x_i)$$

- but for highly peaked distributions, $p(x_i) \sim 0$ for most cases
- most of our measurements of $f(x_i)$ are effectively wasted
- large statistical uncertainty in result
- If we generate x_i with probability proportional to $p(x_i)$

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- all measurements contribute equally
- But how do we do this?

• Want to spend your time in areas proportional to height h(x)



- walk randomly to explore all positions x_i
- if you always head up-hill or down-hill
 - get stuck at nearest peak or valley
- if you head up-hill or down-hill with equal probability
 - you don't prefer peaks over valleys
- Strategy
 - take both up-hill and down-hill steps but with a preference for up-hill

Markov Process

- Generate samples of $\{x_i\}$ with probability p(x)
- x_i no longer chosen independently
- Generate new value from old evolution

$$x_{i+1} = x_i + \delta x$$

- Accept/reject change based on $p(x_i)$ and $p(x_{i+1})$
 - if $p(x_{i+1}) > p(x_i)$ then accept the change

AA Markov 1856-1922

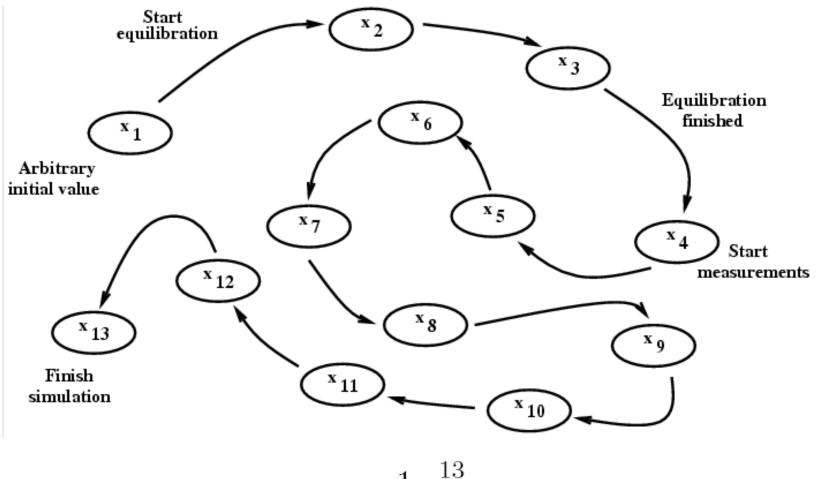
- if $p(x_{i+1}) < p(x_i)$ then accept with probability $\frac{p(x_{i+1})}{p(x_i)}$
- Asymptotic probability of x_i appearing is proportional to p(x)
- Need random numbers
 - to generate random moves δx and to do accept/reject step

Markov Chains

The generated sample forms a Markov chain

- The update process must be ergodic
 - Able to reach all x
 - If the updates are non-ergodic then some states will be absent
 - Probability distribution will not be sampled correctly
 - computed expectation values will be incorrect!
- Takes some time to equilibrate
 - need to forget where you started from
- Accept / reject step is called the Metropolis algorithm

Markov Chains and Convergence



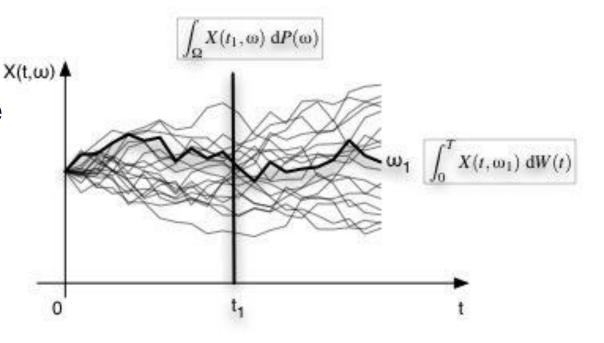
$$\langle f \rangle = \frac{1}{10} \sum_{i=4}^{13} f(x_i)$$

Statistical Physics

- Many applications use MC
- Statistical physics is an example
- Systems have extremely high dimensionality
 - e.g. positions and orientations of millions of atoms
- Use MC to generate "snapshots" or configurations of the system
- Average over these to obtain answer
 - Each individual state has no real meaning on its own
 - Quantities determined as averages across all the states

MC in Finance II

- Price model called Black-Scholes equation
 - Partial differential equation
 - based on geometric brownian motion (GMB) of underlying asset
- Assumes a "perfect" market
 - markets are not perfect, especially during crashes!
 - Many extensions
 - area of active research
- Use MC to generate many different GMB paths
 - statistically analyse ensemble



Numerical Weather Prediction



Image taken by NASA's Terra Satellite 7th January 2010

Britain in the grip of a very cold spell of weather

NWP in the UK

- Weather forecasts used by the media in the UK (e.g. BBC news) are generated by the UK Met office
 - Code is called the Unified Model
 - Same code runs climate model and weather forecast
 - Can cover the whole globe

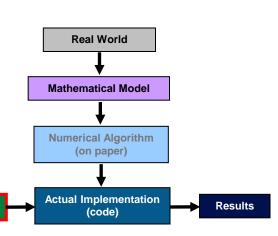
- Newest supercomputer
 - Cray XC40
 - almost half a million processor-cores
 - weighs 140 tonnes

(http://www.bbc.co.uk/news/science-environment-29789208)

Initial conditions and the Butterfly effect

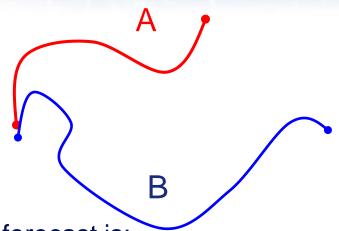
- The equations are extremely sensitive to initial conditions
 - Small changes in the initial conditions result in large changes in outcome
- Discovered by Edward Lorenz circa 1960
 - 12 variable computer model
 - Minute variations in input parameters
 - Resulted in grossly different weather patterns

- The Butterfly effect
 - The flap of a butterfly's wings can effect the path of a tornado
 - My prediction is wrong because of effects too small to see



Chaos, randomness and probability

- A Chaotic system evolves to very different states from close initial states
 - no discernible pattern



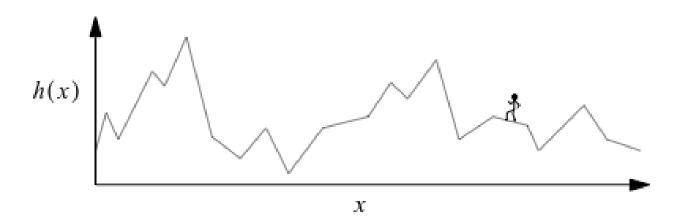
- We can use this to estimate how reliable our forecast is:
- Perturb the initial conditions
 - -Based on uncertainty of measurement
 - -Run a new forecast
- Repeat many times (random numbers to do perturbation)
 - -Generate an "ensemble" of forecasts
 - -Can then estimate the probability of the forecast being correct
- If we ran 100 simulations and 70 said it would rain
 - -probability of rain is 70%
 - -called **ensemble** weather forecasting

Optimisation Problems

- Optima of function rather than averages
- Often need to minimise or maximise functions of many variables
 - minimum distance for travelling salesman problem
 - minimum error for a set of linear equations
- Procedure
 - take an initial guess
 - successively update to progress towards solution
- What changes should be proposed?
 - could reduce/increase the function with each update (steepest descent/ascent) ...
 - ... but this will only find the local minimum/maximum

Stochastic Optimisation

- Add a random component to updates
- Sometimes make "bad" moves
 - possible to escape from local minima
 - but want more up-hill steps than down-hill ones
- Hill-walking example
 - find the highest peak in the Alps by maximising h(x)



Simulated Annealing

- Monte Carlo technique applied to optimisation
- Analogy with Metropolis and Statistical Mechanics
- Initial "high-temperature" phase
 - accept both up-hill and down-hill steps to explore the space
- Intermediate phase
 - start to prefer up-hill steps to look for highest mountain
- Final "zero-temperature" phase
 - only accept up-hill steps to locate the peak of the mountain
- A lot of freedom in how you vary the temperature ...

Summary

Random numbers used in many simulations

Mainly to efficiently sample a large space of possibilities

- One state generated from another: Markov Chain
 - Metropolis algorithm gives a guided random walk
- Real simulations can require trillions of random numbers!
 - parallelisation introduces additional complexities ...