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Why Scientists like to gamble
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Overview

* Integration by random numbers
— Why?
— How?
* Uncertainty, Sharply peaked distributions

— Importance sampling

* Markov Processes and the Metropolis algorithm

* Examples
— statistical physics
— finance
— weather forecasting
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Integration — Area under a cuwém

Tile area with strips
of height f(x) and

width &x |~
Analytical: z
oX > dx - 0
E—
Ox
Numerical: integral
replaced with a sum. L 1 b

Uncertainty depends on size of dx (N points) and order of
scheme, (Trapezoidal, Simpson, etc)

“ Monte Carlo Methods l
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Multi-dimensional integration

1d integration
requires N points

2d integration
requires N?

Problem of dimension
m requires N™

Curse of dimensionality
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Calculating =« by MC

Area of circle = rr?

Area of unit square, s =1
Area of shaded arc,
c=4

c/s = 74

Estimate ratio of
shaded to non-shaded
area to determine «
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The algorithm

* y = rand() /RAND MAX // float {0.0:1.0}

* x = rand() /RAND MAX

* P=x*x + y*y // x*x + y*y = 1 eqn of circle
e If(P<=1)

— isInCircle

e Else
— IsOutCircle

e Pi=4*isInCircle / (isOutCircle+isInCircle)

Monte Carlo Methods
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7t from 10 darts

T =2.8 L

04—

0.2 —
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nt from 100 darts

n=3.0
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Estimating the uncertainty

* Stochastic method 327
—Statistical uncertainty

Z*
I:‘l | | | |

—Run each measurement 100
times with different random i
number sequences B 31

—Determine the variance of the
distribution

ol=(x-x) 1k o

* Standard deviation iIs ¢

e Estimate this 315k [ | l }

| | | | | |
3 #
10 100 1000 10000 le+05 le+D6  le+(7

* How does the uncertainty l N
scale with N, number of

samﬁles
Monte Carlo Methods
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Uncertainty versus N

* Log-log plot _
y — aX b 1:!.1§

log y = log a + b log X
S o001k
* Exponentb,is gradient ~

°* b=-0.5

0.001

* Law of large numbers and

central limit theorem T

0.0001 L1l !
100 1000 10000 le+05 le+06 le+07

A~ 1/VN

True for all MC methods
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More realistic problem

* Imagine traffic model

— can compute average velocity for a given density
— this in itself requires random numbers ...

* What if we wanted to know average velocity of cars over a

week

— each day has a different density of cars (weekday, weekend, ...)
— assume this has been measured (by a man with a clipboard)

0.3 4
0.5 1
0.7 2
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Expectation values

* Procedure:

— run a simulation for each density to give average car velocity
— compute average over week by weighting by probability of that density

— lL.e. velocity = 1/7* ( 4 * velocity(density = 0.3) +

1 * velocity(density = 0.5) +
2 * velocity(density = 0.7) )

* In general, for many states x; (e.g. density) and some function
f(x;) (e.g. velocity) need to compute expectation value <f>

N
2 p(x) * f(xi)
1

Monte Carlo Methods
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Continuous distribution TA\»W‘

probability of
occurrence
density of
traffic
0 1

B )\ (5
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Aside: A hi
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A high dimensional system |

* 1 coin has 1 degree of freedom
— Two possible states Heads and Tails

e 2 coins have 2 degrees of freedoms

— Four possible micro-states, two of which are the same
— Three possible states 1*HH, 2*HT, 1*TT

* n coins have n degrees of freedom

— 2" microstates: n+1 states

— Number of micro-states in each state is given by the binomial
expansion coefficient
n

() — 9" — Z T"CRHTT')’L—?“

|
r=0 TCn p— n:

ri(n —r)!
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Highly peaked distribution“'am‘m

Probability distribution

l L

Fraction of max number of heads

D | I | | I I | 11 1 | | I | | I I
0.2 04 0.6 0.8

Fraction of heads

=
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Highly peaked distributionﬂﬁ‘q“p‘*i A
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Probability distribution
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100 Coins Bl L |ePCC]

Probability distribution
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e
Importance Sampling (i)

e The distribution is often sharply
peaked

— especially high-dimensional
functions
— often with fine structure detall

* Random sampling
— p(x;) ~ 0 for many x
— N large to resolve fine structure

* Importance sampling o0t R

— generate weighted distribution™"
— proportional to probability ssedio -

— Monte Carlo Methods
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Importance Sampling (i)

* With random (or uniform) sampling

<f>=3Yp(x) * f(x)

— but for highly peaked distributions, p(x;) ~ O for most cases
— most of our measurements of f(x;) are effectively wasted
— large statistical uncertainty in result

* |f we generate x; with probability proportional to p(x)
1
<f>==31f(x)
— all measurements contribute equally

e But how do we do this?

“ Monte Carlo Methods
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Hill-walking example Bl | o

* Want to spend your time in areas proportional to height h(x)
i

hix) VA

— walk randomly to explore all positions X;

— If you always head up-hill or down-hill
— get stuck at nearest peak or valley

— 1f you head up-hill or down-hill with equal probability
— you don’t prefer peaks over valleys

* Strategy
— take both up-hill and down-hill steps but with a preference for up-hill

“ Monte Carlo Methods l -
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Markov Process

* Generate samples of {x;} with probability p(x)
* X; no longer chosen independently

* Generate new value from old — evolution

X. , = X, + OX
* Accept/reject change based on p(x)) and p(Xi,,)
— If p(Xi11) > p(X;) then accept the change AA Markov 1856-1922

— if p(X;,1) < p(x;) then accept with probability p—lg)((;,})

* Asymptotic probability of x; appearing is proportional to p(x)
* Need random numbers

— to generate random moves 6x and to do accept/reject step

" Monte Carlo Methods l -
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Markov Chains

* The generated sample forms a Markov chain

* The update process must be ergodic

— Able to reach all x

— If the updates are non-ergodic then some states will be absent
— Probability distribution will not be sampled correctly

— computed expectation values will be incorrect!

e Takes some time to equilibrate

— need to forget where you started from

* Accept/ reject step is called the Metropolis algorithm

“ Monte Carlo Methods l -
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Markov Chains and Conve g; cm

Start
equilibration

Equilibration
@ finished
Arbitrary
mitial value
D
@ \ measurements

DN\
simulation @-..______ '

1 13
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Statistical Physics

* Many applications use MC
e Statistical physics is an example

e Systems have extremely high dimensionality
— e.g. positions and orientations of millions of atoms

* Use MC to generate “snapshots” or configurations of the

system

* Average over these to obtain answer

— Each individual state has no real meaning on its own
— Quantities determined as averages across all the states

Monte Carlo Methods
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MC In Finance Il

* Price model called Black-Scholes equation

— Partial differential equation
— based on geometric brownian motion (GMB) of underlying asset

* Assumes a “perfect” market

— markets are not perfect, especially during crashes!
— Many extensions

— area of active j X(1;.0) dP{w)
Q
research X(t.w) A

* Use MC to generate
many different GMB
paths

— statistically analyse
ensemble

" Monte Carlo Methods
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Image taken by
NASA's Terra
Satellite

7th January 2010

Britain in the grip of
a very cold spell of
weather

Monte Carlo Methods



http://www.epcc.ed.ac.uk/

NWP in the UK ——— ‘i 94

* Weather forecasts used by the media in the UK (e.g. BBC

news) are generated by the UK Met office

— Code is called the Unified Model
— Same code runs climate model and weather forecast
— Can cover the whole globe

* Newest supercomputer =
— Cray XC40 -
— almost half a million processor-cores

— weighs 140 tonnes

(http://lwww.bbc.co.uk/news/science-environment-29789208)

Monte Carlo Methods l -


http://www.epcc.ed.ac.uk/

Initial conditions and the Butt‘erﬂm

* The equations are extremely sensitive to initial conditions

— Small changes in the initial conditions result in large changes in
outcome

* Discovered by Edward Lorenz circa 1960

— 12 variable computer model
— Minute variations in input parameters
— Resulted in grossly different weather patterns

* The Butterfly effect

Real World

— The flap of a butterfly’s wings can effect the I
path Of a tornado Mathematical Model

- My predICtlon IS Wrong beCaUSe Of eﬂ:eCtS tOO Numerical Algorithm
small to see fon TDE”

Actual Implementation
(code)

" Monte Carlo Methods l - 31
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Chaos, randomness and prob’abﬂm
A

Monte Carlo Methods

A Chaotic system evolves to very

different states from close initial states
— no discernible pattern

B

We can use this to estimate how reliable our forecast is:

Perturb the initial conditions
—Based on uncertainty of measurement
—Run a new forecast
Repeat many times (random numbers to do perturbation)
—Generate an “ensemble” of forecasts
—Can then estimate the probability of the forecast being correct
If we ran 100 simulations and 70 said it would rain

—probability of rain is 70%
—called ensemble weather forecasting
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Optimisation Problems

* Optima of function rather than averages

* Often need to minimise or maximise functions of many

variables

— minimum distance for travelling salesman problem
— minimum error for a set of linear equations

* Procedure
— take an initial guess
— successively update to progress towards solution

* What changes should be proposed?

— could reduce/increase the function with each update (steepest
descent/ascent) ...

— ... but this will only find the local minimum/maximum

Monte Carlo Methods
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Stochastic Optimisation

* Add a random component to updates

* Sometimes make "bad" moves

— possible to escape from local minima
— but want more up-hill steps than down-hill ones

* Hill-walking example
— find the highest peak in the Alps by maximising h(x)
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Simulated Annealing

* Monte Carlo technique applied to optimisation
* Analogy with Metropolis and Statistical Mechanics

* Initial “high-temperature” phase
— accept both up-hill and down-hill steps to explore the space

* Intermediate phase
— start to prefer up-hill steps to look for highest mountain

* Final “zero-temperature” phase
— only accept up-hill steps to locate the peak of the mountain

* A lot of freedom in how you vary the temperature ...

Monte Carlo Methods l -
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sSummary

Random numbers used in many simulations

Mainly to efficiently sample a large space of possibilities

One state generated from another: Markov Chain
— Metropolis algorithm gives a guided random walk

Real simulations can require trillions of random numbers!

— parallelisation introduces additional complexities ...

Monte Carlo Methods
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