
Numerical computing 

How computers store real numbers 

and the problems that result 



Overview 

• Integers 

• Reals, floats, doubles etc 

• Arithmetical operations and rounding errors 

 

• We write: 

     

 

– but how is this stored? 
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x = sqrt(2.0) 
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Mathematics vs Computers 

• Mathematics is an ideal world 

– integers can be as large as you want 

– real numbers can be as large or as small as you want 

– can represent every number exactly: 

 

1, -3, 1/3, 1036237, 10-232322, √2, π, .... 
   

• Numbers range from - ∞ to +∞ 

– there is also infinite numbers in any interval 

• This not true on a computer 

– numbers have a limited range (integers and real numbers) 

– limited precision (real numbers) 
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Integers   

• We like to use base 10 
– we only write the 10 characters 0,1,2,3,4,5,6,7,8,9 

– use position to represent each power of 10 

 

 

    

– represent positive or negative using a leading “+” or “-” 

• Computers are binary machines 
– can only store ones and zeros 

– minimum storage unit is 8 bits = 1 byte 

• Use base 2 
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125 = 1 * 102 + 2 * 101 + 5 * 100  

    = 1*100 + 2*10 + 5*1 = 125 

1111101=1*26 +1*25 +1*24 +1*23 +1*22 +0*21 +1*20 

       =1*64 +1*32 +1*16 +1*8 +1*4 +0*2 +1*1 

       =125 
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Storage and Range 

• Assume we reserve 1 byte (8 bits) for integers 
– minimum value 0 

– maximum value 28 – 1 = 255 

– if result is out of range we will overflow and get wrong answer! 

 

• Standard storage is 4 bytes = 32 bits 
– minimum value 0 

– maximum value 232 – 1 = 4294967291 = 4 billion = 4G 

• Is this a problem? 
– question: what is a 32-bit operating system? 

 

• Can use 8 bytes (64 bit integers) 
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Aside: Negative Integers 

• Use “two’s complement” representation 

– flip all ones to zeros and zeros to ones 

– then add one (ignoring overflow) 

• Negative integers have the first bit set to “1” 

– for 8 bits, range is now: -128 to + 127 

– normal addition (ignoring overflow) gives the correct answer 
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00000011 = 3 

11111100 

00000001 

11111101 = -3 

125 + (-3) = 01111101 + 111111101 = 01111010  = 122 

flip the bits 

add 1 
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Integer Arithmetic 

• Computers are brilliant at integer maths 

 

• These can be added, subtracted and multiplied with 

complete accuracy… 

– …as long as the final result is not too large in magnitude 

 

• But what about division? 

– 4/2 = 2, 27/3 = 9, but 7/3 = 2 (instead of 2.3333333333333…). 

– what do we do with numbers like that? 

– how do we store real numbers? 
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Fixed-point Arithmetic 

• Can use an integer to represent a real number. 

– we have 8 bits stored in X 0-255. 

– represent real number a between 0.0 and 1.0 by dividing by 256 

– e.g. a = 5/9 = 0.55555 represented as X=142 

– 142/256 = 0.5546875 

– X = integer(a  256), Y=integer(b  256), Z=integer(c x 256) .... 

 

• Operations now treat integers as fractions: 

– E.g. c = a  b becomes 256c = (256a  256b)/256,  

                                          I.e.Z = XY/256 

– Between the upper and lower limits (0.0 & 1.0), we have a 

uniform grid of possible ‘real’ numbers. 
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Problems with Fixed Point 

• This arithmetic is very fast 

– but does not cope with large ranges 

– eg above, cannot represent numbers < 0 or numbers >= 1 

 

• Can adjust the range 

– but at the cost of precision 
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Scientific Notation (in Decimal) 

• How do we store 4261700.0 and 0.042617 

– in the same storage scheme? 

• Decimal point was previously fixed 

– now let it float as appropriate 

• Shift the decimal place so that it is at the start 

– ie 0.42617  (this is the mantissa m) 

• Remember how many places we have to shift 

– ie +7 or -1 (the exponent e) 

• Actual number is 0.mmmm x 10e 

– ie 0.4262 * 10+7 or 0.4262 * 10-1 

– always use all 5 numbers - don’t waste space storing leading zero! 

– automatically adjusts to the magnitude of the number being stored 

– could have chosen to use 2 spaces for e to cope with very large numbers 
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Floating-Point Numbers 

• Decimal point “floats” left and right as required 
– fixed-point numbers have constant absolute error, eg +/- 0.00001 

– floating-point have a constant relative error, eg +/- 0.001% 

• Computer storage of real numbers directly analogous to 
scientific notation 
– except using binary representation not decimal 

– ... with a few subtleties regarding sign of m and e 

• All modern processors are designed to deal with floating-
point numbers directly in hardware 

m m m m 

e 

0 x 10 
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The IEEE 754 Standard  

• Mantissa made positive or negative: 

– the first bit indicates the sign: 0 = positive and 1 = negative. 

• General binary format is: 

 

 

• Exponent made positive or negative using a “biased” or 

“shifted” representation: 

– If the stored exponent, c, is X bits long, then the actual exponent is c 

– bias where the offset bias = (2X/2 –1).  e.g. X=3: 

1 1001010 1010100010100000101 

Sign Exponent Mantissa 

Highest 

Bit 

Lowest 

Bit 

Stored (c,binary) 000 001 010 011 100 101 110 111 

Stored (c,decimal) 0 1 2 3 4 5 6 7 

Represents (c-3) -3 -2 -1 0 1 2 3 4 
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IEEE – The Hidden Bit 

• In base 10 exponent-mantissa notation: 
– we chose to standardise the mantissa so that it always lies in 

the binary range 0.0  m < 1.0 

– the first digit is always 0, so there is no need to write it. 

• The FP mantissa is “normalised” to lie in the binary 
range: 
    1.0  m < 10.0        ie decimal range [1.0,2.0) 

 

– as the first bit is always one, there is no need to store it, We 
only store the variable part, called the significand (f). 

– the mantissa m = 1.f  (in binary), and the 1 is called  “The 
Hidden Bit”: 

– however, this means that zero requires special treatment. 

– having f and e as all zeros is defined to be (+/-) zero. 
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Binary Fractions: what does 1.f mean? 

• Whole numbers are straightforward 
– base 10: 109 = 1*102 + 0*101 + 9*100 = 1*100 + 0*10 + 9*1 = 109 

– base   2:  1101101 = 1*26+1*25+0*24+1*23+1*22+0*21+1*20 

               = 1*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 1*1 

   = 64 + 32 + 8 + 4 + 1 = 109 

• Simple extension to fractions 
    109.625 = 1*102  + 0*101 + 9*100 + 6*10-1 + 2*10-2    + 5*10-3 

              = 1*100 + 0*10  + 9*1    + 6*0.1   + 2*0.01 + 5*0.001 

 

    1101101.101  = 109 + 1*2-1 + 0*2-2 + 1*2-3 

           = 109  + 1*(1/2) + 0*(1/4) + 1*(1/8) 
           = 109  + 0.5 + 0.125 

           = 109.625 
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Relation to Fixed Point 

• Like fixed point with divisor of 2n 

– base 10: 109.625 = 109 + 625 / 103 = 109 + (625 / 1000) 

– base   2: 1101101.101 = 1101101 + (101 / 1000) 

               = 109 + 5/8 = 109.625 

 

• Or can think of shifting the decimal point 

109.625 = 109625/103 = 109625 / 1000   (decimal) 

1101101.101 = 1101101101 / 1000          (binary) 

                  = 877/8 = 109.625 
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IEEE – Bitwise Storage Size 

• The number of bits for the mantissa and exponent. 

– The normal floating-point types are defined as: 

 

 

 

 

 

– there are also “Extended” versions of both the single and double types, allowing 

even more bits to be used. 

– the Extended types are not supported uniformly over a wide range of platforms; 

Single and Double are. 

Type Sign, a  Exponent, c Mantissa, f Representation 

Single 

32bit 

1bit 8bits 23+1bits (-1)s  1.f  2c-127 

Decimal: ~8s.f.  10~±38 

Double 

64bit 

1bit 11bits 52+1bits  (-1)s  1.f  2c-1023 

Decimal: ~16s.f.  10~±308 
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32-bit and 64-bit floating point 

• Conventionally called single and double precision 

– C, C++ and Java: float (32-bit), double (64-bit) 

– Fortran: REAL (32-bit), DOUBLE PRECISION (64-bit) 

– or REAL(KIND(1.0e0)), REAL(KIND(1.0d0)) 

– or REAL (Kind=4), REAL (Kind=8) 

– NOTHING TO DO with 32-bit / 64-bit operating systems!!! 

• Single precision accurate to 8 significant figures 

– eg 3.2037743 E+03 

• Double precision to 16 

– eg 3.203774283170437 E+03 

• Fortran usually knows this when printing default format 

– C and Java often don’t 

– depends on compiler 
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IEEE Floating-point Discretisation 

• This still cannot represent all numbers: 

• And in two dimensions  
you get something like: 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

16.125 16.0

2.125 2.125

INPUT STORED
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Limitations 

• Numbers cannot be stored exactly 
– gives problems when they have very different magnitudes 

• Eg 1.0E-6 and 1.0E+6 
– no problem storing each number separately, but when adding: 

 

  0.000001 + 1000000.0 = 1000000.000001 = 1.000000000001E6 

 

– in 32-bit will be rounded to 1.0E6 

• So 
      (0.000001 +  1000000.0) - 1000000.0  = 0.0 

       0.000001 + (1000000.0  - 1000000.0) = 0.000001 

 

– FP arithmetic is commutative but not associative! 
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Example I 
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start with ⅔ 

single, double, quadruple  

divide by 10 add 1 

repeat many times (18) 

subtract 1 multiply by 10 

repeat many times (18) 

What happens to ⅔ ? 
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The output 
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The result: Two thirds 
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Single precision 

fifty three billion ! 

Double precision 

fifty! 

Quadruple precision  

has no information about two-

thirds after 18th decimal place 

http://www.epcc.ed.ac.uk/


Example II – order matters!  
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This code adds three numbers 

together in a different order. 

Single and double precision. 

What is the answer? 
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The result. One 
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Example III: Gauss 

• C. 1785AD in what is now Lower Saxony, Germany 

– School teacher sets class a problem 

– Sum numbers 1 to 100 

– Nine year old boy quickly has the answer 
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Carl Friedrich Gauss 

 (C.1840 AD) 
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Summing numbers 
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sums numbers to 100, 1000, 10000 

performs sum low-to-high and high-

to-low in single precision 
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The result:Gauss’ sum 
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In single precision summing numbers 1 to 10000 

produces the wrong answer  

high-to-low and low-to-high produce different wrong 

answers 

What happens when in parallel 

same calculation, different numbers of processors! 
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Special Values 

• We have seen that zero is treated specially 

– corresponds to all bits being zero (except the sign bit) 

• There are other special numbers 

 

– infinity: which is usually printed as “Inf” 

– Not a Number: which is usually printed as “NaN” 

 

• These also have special bit patterns 
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Infinity and Not a Number 

• Infinity is usually generated by dividing any finite number 

by 0. 

– although can also be due to numbers being too large to store 

– some operations using infinity are well defined, e.g. -3/  = -0 

 

• NaN is generated under a number of conditions: 

  + ( - ),    0  ,   0/0,   /,   (X) where X < 0.0 

 

– most common is the last one, eg x = sqrt(-1.0) 

• Any computation involving NaN’s returns NaN. 

– there is actually a whole set of NaN binary patterns, which can be 

used to indicate why the NaN occurred. 
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Exponent, e 

(unshifted) 

Mantissa, f Represents 

000000… 0 ±0 

000000… 0 0.f  2(1-bias) [denormal] 

000… < e < 111… Any 1.f  2(e-bias) 

111111… 0 ± 

111111… 0 NaN 

 

• Most numbers are in standard form (middle row) 
– have already covered zero, infinity and NaN 

– but what are these “denormal numbers” ??? 

IEEE Special Values 
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Range of Single Precision 

• Have 8 bits for exponent, 1+23 bits for mantissa 
– unshifted exponent can range from 0 to 255 (bias is 127) 

– smallest and largest values are reserved for denormal (see later) 
and infinity or NaN 

– unshifted range is 1 to 254, shifted is -126 to 127 

• Largest number: 
1.11111111111111111111111 x 2127 

~ 2 x 2127 = 2128 ~ 3.4 x 1038 

• Smallest number 
1.00000000000000000000000 x 2-126 

= 2-126 ~ 1.2 x 10-38 

• But what is smallest exponent reserved for ...? 
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IEEE Denormal Numbers 

• Standard IEEE has mantissa normalised to 1.xxx 

• But, normalised numbers can give x-y=0 when xy!  

– consider 1.102-Emin and 1.002-Emin where Emin is smallest exponent 

– upon subtraction, we are left with 0.102-Emin. 

– in normalised form we get 1.002-Emin-1: 

– this cannot be stored because the exponent is too small. 

– when normalised it must be flushed to zero. 

– thus, we have x  y while at the same time x-y = 0 ! 

• Thus, the smallest exponent is set aside for denormal 

numbers, beginning with 0.f (not 1.f). 

– can store numbers smaller than the normal minimum value 

– but with reduced precision in the mantissa 

– ensures that x = y when x-y = 0 (also called gradual underflow) 
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Denormal Example 

• Consider the single precision bit patterns: 

– mantissa: 0000100.... 

– exponent: 00000000 

 

• Exponent is zero but mantissa is non-zero 

– a denormal number 

– value is 0. 0000100... x 2-126 ~ 2-5 x 2-126 = 2-131 ~ 3.7E-40 

 

• Smaller than normal minimum value 

– but we lose precision due to all the leading zeroes 

– smallest possible number is 2-23 x 2-126 = 2-149 ~ 1.4E-45 
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Exceptions 

• May want to terminate calculation if any special values occur 

– could indicate an error in your code 

 

• Can usually be controlled by your compiler 

– default behaviour can vary 

– eg some systems terminate on NaN, some continue 

 

• Usual action is to terminate and dump the core 

 

34 L02 Numerical Computing 

http://www.epcc.ed.ac.uk/


IEEE Arithmetic Exceptions 

 

 

 

 

 

 

 

• It is not necessary to catch all of these. 
– inexact occurs extremely frequently and is usually ignored 

– underflow is also usually ignored 

– you probably want to catch the others 

Exception Result 

Overflow  ±, f = 11111… 

Underflow 0, ±2-bias,  [denormal] 

Divide by zero ± 

Invalid NaN 

Inexact  round(x) 
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IEEE Rounding 

• We wish to add, subtract, multiply and divide. 

– E.g. Addition of two 3d.p. decimal numbers: 

 

 

 

• In essence: 

– we shift the decimal (radix) point,  

– perform fixed point arithmetic, 

– renormalise the number by shifting the radix point again. 

• But what do we do with that 5? 

– do we round up, round down, truncate, ... 

0.124110-1 + 0.281510-2 = 

0.124110-1 +    0.0281510-1 = 0.1522510-1 

 

But can only store 4 decimal places: 

0.152210-1 

or 

 0.1523 10-1 
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IEEE Rounding Modes 

• Rounding types: 

– there are four types of rounding for arithmetic operations. 

– Round to nearest: e.g. -0.001298 becomes -0.00130.   

– Round to zero:   e.g. -0.001298 becomes -

0.00129. 

– Round to +infinity: e.g. -0.001298 becomes -0.00129. 

– Round to –infinity:  e.g. -0.001298 becomes -0.00130. 

– but how can we ensure the rounding is done correctly? 

• Guard digits: 

– calculations are performed at slightly greater precision on the 

CPU, and then stored in standard IEEE floating-point numbers. 

– usually uses three extra binary digits to ensure correctness. 

• Your compiler may be able to change the mode 
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Implementations: C & FORTRAN 

• Most C and FORTRAN compilers are fully IEEE 754 
compliant. 
– compiler switches are used to switch on exception handlers. 

– these may be very expensive if dealt with in software. 

– you may wish to switch them on for testing (except inexact),  
and switch them off for production runs. 

• But there are more subtle differences. 
– FORTRAN always preserves the order of calculations: 

– A + B + C = (A + B) +C, always. 

– C compilers are free to modify the order during optimisation. 

– A + B + C may become (A + B) + C or A + (B + C). 

– Usually, switching off optimisations retains the order of operations. 
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Implementations: Java 

• In summary: 

– Java only supports round-to-nearest. 

– Java does not allow users to catch floating-point exceptions. 

– Java only has one NaN. 

• All of this is technically a bad thing 

– these tools can be used to to test for instabilities in algorithms  

– this is why Java does not support these tools, and also why hardcore 

numerical scientists don’t like Java very much 

– however, Java also has some advantages over, say, C 

– forces explicit casting 

– you can use the strictfp modifier to ensure that the same bytecode 

produces identical results across all platforms. 
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Summary 

• Real numbers stored in floating-point format 

– can be single (32-bit) and double (64-bit) precison 

• Conform to IEEE 754 standard 

– defines storage format 

– and the result of all arithmetical operations 

 

• All real calculations suffer from rounding errors 

– important to choose an algorithm where these are minimised 

 

• Practical exercise illustrates the key points 
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