
Numerical computing

How computers store real numbers

and the problems that result

Overview

• Integers

• Reals, floats, doubles etc

• Arithmetical operations and rounding errors

• We write:

– but how is this stored?

2 L02 Numerical Computing

x = sqrt(2.0)

http://www.epcc.ed.ac.uk/

Mathematics vs Computers

• Mathematics is an ideal world

– integers can be as large as you want

– real numbers can be as large or as small as you want

– can represent every number exactly:

1, -3, 1/3, 1036237, 10-232322, √2, π,

• Numbers range from - ∞ to +∞

– there is also infinite numbers in any interval

• This not true on a computer

– numbers have a limited range (integers and real numbers)

– limited precision (real numbers)

3 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Integers

• We like to use base 10
– we only write the 10 characters 0,1,2,3,4,5,6,7,8,9

– use position to represent each power of 10

– represent positive or negative using a leading “+” or “-”

• Computers are binary machines
– can only store ones and zeros

– minimum storage unit is 8 bits = 1 byte

• Use base 2

4 L02 Numerical Computing

125 = 1 * 102 + 2 * 101 + 5 * 100

 = 1*100 + 2*10 + 5*1 = 125

1111101=1*26 +1*25 +1*24 +1*23 +1*22 +0*21 +1*20

 =1*64 +1*32 +1*16 +1*8 +1*4 +0*2 +1*1

 =125

http://www.epcc.ed.ac.uk/

Storage and Range

• Assume we reserve 1 byte (8 bits) for integers
– minimum value 0

– maximum value 28 – 1 = 255

– if result is out of range we will overflow and get wrong answer!

• Standard storage is 4 bytes = 32 bits
– minimum value 0

– maximum value 232 – 1 = 4294967291 = 4 billion = 4G

• Is this a problem?
– question: what is a 32-bit operating system?

• Can use 8 bytes (64 bit integers)

5 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Aside: Negative Integers

• Use “two’s complement” representation

– flip all ones to zeros and zeros to ones

– then add one (ignoring overflow)

• Negative integers have the first bit set to “1”

– for 8 bits, range is now: -128 to + 127

– normal addition (ignoring overflow) gives the correct answer

6 L02 Numerical Computing

00000011 = 3

11111100

00000001

11111101 = -3

125 + (-3) = 01111101 + 111111101 = 01111010 = 122

flip the bits

add 1

http://www.epcc.ed.ac.uk/

Integer Arithmetic

• Computers are brilliant at integer maths

• These can be added, subtracted and multiplied with

complete accuracy…

– …as long as the final result is not too large in magnitude

• But what about division?

– 4/2 = 2, 27/3 = 9, but 7/3 = 2 (instead of 2.3333333333333…).

– what do we do with numbers like that?

– how do we store real numbers?

7 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Fixed-point Arithmetic

• Can use an integer to represent a real number.

– we have 8 bits stored in X 0-255.

– represent real number a between 0.0 and 1.0 by dividing by 256

– e.g. a = 5/9 = 0.55555 represented as X=142

– 142/256 = 0.5546875

– X = integer(a  256), Y=integer(b  256), Z=integer(c x 256)

• Operations now treat integers as fractions:

– E.g. c = a  b becomes 256c = (256a  256b)/256,

 I.e.Z = XY/256

– Between the upper and lower limits (0.0 & 1.0), we have a

uniform grid of possible ‘real’ numbers.

8 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Problems with Fixed Point

• This arithmetic is very fast

– but does not cope with large ranges

– eg above, cannot represent numbers < 0 or numbers >= 1

• Can adjust the range

– but at the cost of precision

9 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Scientific Notation (in Decimal)

• How do we store 4261700.0 and 0.042617

– in the same storage scheme?

• Decimal point was previously fixed

– now let it float as appropriate

• Shift the decimal place so that it is at the start

– ie 0.42617 (this is the mantissa m)

• Remember how many places we have to shift

– ie +7 or -1 (the exponent e)

• Actual number is 0.mmmm x 10e

– ie 0.4262 * 10+7 or 0.4262 * 10-1

– always use all 5 numbers - don’t waste space storing leading zero!

– automatically adjusts to the magnitude of the number being stored

– could have chosen to use 2 spaces for e to cope with very large numbers

10 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Floating-Point Numbers

• Decimal point “floats” left and right as required
– fixed-point numbers have constant absolute error, eg +/- 0.00001

– floating-point have a constant relative error, eg +/- 0.001%

• Computer storage of real numbers directly analogous to
scientific notation
– except using binary representation not decimal

– ... with a few subtleties regarding sign of m and e

• All modern processors are designed to deal with floating-
point numbers directly in hardware

m m m m

e

0 x 10

11 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

The IEEE 754 Standard

• Mantissa made positive or negative:

– the first bit indicates the sign: 0 = positive and 1 = negative.

• General binary format is:

• Exponent made positive or negative using a “biased” or

“shifted” representation:

– If the stored exponent, c, is X bits long, then the actual exponent is c

– bias where the offset bias = (2X/2 –1). e.g. X=3:

1 1001010 1010100010100000101

Sign Exponent Mantissa

Highest

Bit

Lowest

Bit

Stored (c,binary) 000 001 010 011 100 101 110 111

Stored (c,decimal) 0 1 2 3 4 5 6 7

Represents (c-3) -3 -2 -1 0 1 2 3 4

12 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE – The Hidden Bit

• In base 10 exponent-mantissa notation:
– we chose to standardise the mantissa so that it always lies in

the binary range 0.0  m < 1.0

– the first digit is always 0, so there is no need to write it.

• The FP mantissa is “normalised” to lie in the binary
range:
 1.0  m < 10.0 ie decimal range [1.0,2.0)

– as the first bit is always one, there is no need to store it, We
only store the variable part, called the significand (f).

– the mantissa m = 1.f (in binary), and the 1 is called “The
Hidden Bit”:

– however, this means that zero requires special treatment.

– having f and e as all zeros is defined to be (+/-) zero.

13 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Binary Fractions: what does 1.f mean?

• Whole numbers are straightforward
– base 10: 109 = 1*102 + 0*101 + 9*100 = 1*100 + 0*10 + 9*1 = 109

– base 2: 1101101 = 1*26+1*25+0*24+1*23+1*22+0*21+1*20

 = 1*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 1*1

 = 64 + 32 + 8 + 4 + 1 = 109

• Simple extension to fractions
 109.625 = 1*102 + 0*101 + 9*100 + 6*10-1 + 2*10-2 + 5*10-3

 = 1*100 + 0*10 + 9*1 + 6*0.1 + 2*0.01 + 5*0.001

 1101101.101 = 109 + 1*2-1 + 0*2-2 + 1*2-3

 = 109 + 1*(1/2) + 0*(1/4) + 1*(1/8)
 = 109 + 0.5 + 0.125

 = 109.625

14 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Relation to Fixed Point

• Like fixed point with divisor of 2n

– base 10: 109.625 = 109 + 625 / 103 = 109 + (625 / 1000)

– base 2: 1101101.101 = 1101101 + (101 / 1000)

 = 109 + 5/8 = 109.625

• Or can think of shifting the decimal point

109.625 = 109625/103 = 109625 / 1000 (decimal)

1101101.101 = 1101101101 / 1000 (binary)

 = 877/8 = 109.625

15 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE – Bitwise Storage Size

• The number of bits for the mantissa and exponent.

– The normal floating-point types are defined as:

– there are also “Extended” versions of both the single and double types, allowing

even more bits to be used.

– the Extended types are not supported uniformly over a wide range of platforms;

Single and Double are.

Type Sign, a Exponent, c Mantissa, f Representation

Single

32bit

1bit 8bits 23+1bits (-1)s  1.f  2c-127

Decimal: ~8s.f.  10~±38

Double

64bit

1bit 11bits 52+1bits (-1)s  1.f  2c-1023

Decimal: ~16s.f.  10~±308

16 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

32-bit and 64-bit floating point

• Conventionally called single and double precision

– C, C++ and Java: float (32-bit), double (64-bit)

– Fortran: REAL (32-bit), DOUBLE PRECISION (64-bit)

– or REAL(KIND(1.0e0)), REAL(KIND(1.0d0))

– or REAL (Kind=4), REAL (Kind=8)

– NOTHING TO DO with 32-bit / 64-bit operating systems!!!

• Single precision accurate to 8 significant figures

– eg 3.2037743 E+03

• Double precision to 16

– eg 3.203774283170437 E+03

• Fortran usually knows this when printing default format

– C and Java often don’t

– depends on compiler

17 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE Floating-point Discretisation

• This still cannot represent all numbers:

• And in two dimensions
you get something like:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

16.125 16.0

2.125 2.125

INPUT STORED

18 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Limitations

• Numbers cannot be stored exactly
– gives problems when they have very different magnitudes

• Eg 1.0E-6 and 1.0E+6
– no problem storing each number separately, but when adding:

 0.000001 + 1000000.0 = 1000000.000001 = 1.000000000001E6

– in 32-bit will be rounded to 1.0E6

• So
 (0.000001 + 1000000.0) - 1000000.0 = 0.0

 0.000001 + (1000000.0 - 1000000.0) = 0.000001

– FP arithmetic is commutative but not associative!

19 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Example I

L02 Numerical Computing 20

start with ⅔

single, double, quadruple

divide by 10 add 1

repeat many times (18)

subtract 1 multiply by 10

repeat many times (18)

What happens to ⅔ ?

http://www.epcc.ed.ac.uk/

The output

L02 Numerical Computing 21

http://www.epcc.ed.ac.uk/

The result: Two thirds

L02 Numerical Computing 22

Single precision

fifty three billion !

Double precision

fifty!

Quadruple precision

has no information about two-

thirds after 18th decimal place

http://www.epcc.ed.ac.uk/

Example II – order matters!

L02 Numerical Computing 23

This code adds three numbers

together in a different order.

Single and double precision.

What is the answer?

http://www.epcc.ed.ac.uk/

The result. One

L02 Numerical Computing 24

http://www.epcc.ed.ac.uk/

Example III: Gauss

• C. 1785AD in what is now Lower Saxony, Germany

– School teacher sets class a problem

– Sum numbers 1 to 100

– Nine year old boy quickly has the answer

L02 Numerical Computing 25

Carl Friedrich Gauss

 (C.1840 AD)

http://www.epcc.ed.ac.uk/

Summing numbers

L02 Numerical Computing 26

sums numbers to 100, 1000, 10000

performs sum low-to-high and high-

to-low in single precision

http://www.epcc.ed.ac.uk/

The result:Gauss’ sum

L02 Numerical Computing 27

In single precision summing numbers 1 to 10000

produces the wrong answer

high-to-low and low-to-high produce different wrong

answers

What happens when in parallel

same calculation, different numbers of processors!

http://www.epcc.ed.ac.uk/

Special Values

• We have seen that zero is treated specially

– corresponds to all bits being zero (except the sign bit)

• There are other special numbers

– infinity: which is usually printed as “Inf”

– Not a Number: which is usually printed as “NaN”

• These also have special bit patterns

28 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Infinity and Not a Number

• Infinity is usually generated by dividing any finite number

by 0.

– although can also be due to numbers being too large to store

– some operations using infinity are well defined, e.g. -3/  = -0

• NaN is generated under a number of conditions:

  + (- ), 0  , 0/0, /, (X) where X < 0.0

– most common is the last one, eg x = sqrt(-1.0)

• Any computation involving NaN’s returns NaN.

– there is actually a whole set of NaN binary patterns, which can be

used to indicate why the NaN occurred.

29 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Exponent, e

(unshifted)

Mantissa, f Represents

000000… 0 ±0

000000… 0 0.f  2(1-bias) [denormal]

000… < e < 111… Any 1.f  2(e-bias)

111111… 0 ±

111111… 0 NaN

• Most numbers are in standard form (middle row)
– have already covered zero, infinity and NaN

– but what are these “denormal numbers” ???

IEEE Special Values

30 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Range of Single Precision

• Have 8 bits for exponent, 1+23 bits for mantissa
– unshifted exponent can range from 0 to 255 (bias is 127)

– smallest and largest values are reserved for denormal (see later)
and infinity or NaN

– unshifted range is 1 to 254, shifted is -126 to 127

• Largest number:
1.11111111111111111111111 x 2127

~ 2 x 2127 = 2128 ~ 3.4 x 1038

• Smallest number
1.00000000000000000000000 x 2-126

= 2-126 ~ 1.2 x 10-38

• But what is smallest exponent reserved for ...?

31 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE Denormal Numbers

• Standard IEEE has mantissa normalised to 1.xxx

• But, normalised numbers can give x-y=0 when xy!

– consider 1.102-Emin and 1.002-Emin where Emin is smallest exponent

– upon subtraction, we are left with 0.102-Emin.

– in normalised form we get 1.002-Emin-1:

– this cannot be stored because the exponent is too small.

– when normalised it must be flushed to zero.

– thus, we have x  y while at the same time x-y = 0 !

• Thus, the smallest exponent is set aside for denormal

numbers, beginning with 0.f (not 1.f).

– can store numbers smaller than the normal minimum value

– but with reduced precision in the mantissa

– ensures that x = y when x-y = 0 (also called gradual underflow)

32 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Denormal Example

• Consider the single precision bit patterns:

– mantissa: 0000100....

– exponent: 00000000

• Exponent is zero but mantissa is non-zero

– a denormal number

– value is 0. 0000100... x 2-126 ~ 2-5 x 2-126 = 2-131 ~ 3.7E-40

• Smaller than normal minimum value

– but we lose precision due to all the leading zeroes

– smallest possible number is 2-23 x 2-126 = 2-149 ~ 1.4E-45

33 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Exceptions

• May want to terminate calculation if any special values occur

– could indicate an error in your code

• Can usually be controlled by your compiler

– default behaviour can vary

– eg some systems terminate on NaN, some continue

• Usual action is to terminate and dump the core

34 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE Arithmetic Exceptions

• It is not necessary to catch all of these.
– inexact occurs extremely frequently and is usually ignored

– underflow is also usually ignored

– you probably want to catch the others

Exception Result

Overflow ±, f = 11111…

Underflow 0, ±2-bias, [denormal]

Divide by zero ±

Invalid NaN

Inexact round(x)

35 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE Rounding

• We wish to add, subtract, multiply and divide.

– E.g. Addition of two 3d.p. decimal numbers:

• In essence:

– we shift the decimal (radix) point,

– perform fixed point arithmetic,

– renormalise the number by shifting the radix point again.

• But what do we do with that 5?

– do we round up, round down, truncate, ...

0.124110-1 + 0.281510-2 =

0.124110-1 + 0.0281510-1 = 0.1522510-1

But can only store 4 decimal places:

0.152210-1

or

 0.1523 10-1

36 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

IEEE Rounding Modes

• Rounding types:

– there are four types of rounding for arithmetic operations.

– Round to nearest: e.g. -0.001298 becomes -0.00130.

– Round to zero: e.g. -0.001298 becomes -

0.00129.

– Round to +infinity: e.g. -0.001298 becomes -0.00129.

– Round to –infinity: e.g. -0.001298 becomes -0.00130.

– but how can we ensure the rounding is done correctly?

• Guard digits:

– calculations are performed at slightly greater precision on the

CPU, and then stored in standard IEEE floating-point numbers.

– usually uses three extra binary digits to ensure correctness.

• Your compiler may be able to change the mode

37 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Implementations: C & FORTRAN

• Most C and FORTRAN compilers are fully IEEE 754
compliant.
– compiler switches are used to switch on exception handlers.

– these may be very expensive if dealt with in software.

– you may wish to switch them on for testing (except inexact),
and switch them off for production runs.

• But there are more subtle differences.
– FORTRAN always preserves the order of calculations:

– A + B + C = (A + B) +C, always.

– C compilers are free to modify the order during optimisation.

– A + B + C may become (A + B) + C or A + (B + C).

– Usually, switching off optimisations retains the order of operations.

38 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Implementations: Java

• In summary:

– Java only supports round-to-nearest.

– Java does not allow users to catch floating-point exceptions.

– Java only has one NaN.

• All of this is technically a bad thing

– these tools can be used to to test for instabilities in algorithms

– this is why Java does not support these tools, and also why hardcore

numerical scientists don’t like Java very much

– however, Java also has some advantages over, say, C

– forces explicit casting

– you can use the strictfp modifier to ensure that the same bytecode

produces identical results across all platforms.

39 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

Summary

• Real numbers stored in floating-point format

– can be single (32-bit) and double (64-bit) precison

• Conform to IEEE 754 standard

– defines storage format

– and the result of all arithmetical operations

• All real calculations suffer from rounding errors

– important to choose an algorithm where these are minimised

• Practical exercise illustrates the key points

40 L02 Numerical Computing

http://www.epcc.ed.ac.uk/

