
Message Passing Programming

Designing MPI Applications

2 Designing MPI Programs

Overview

Lecture will cover
– MPI portability

– maintenance of serial code

– general design

– debugging

– verification

3 Designing MPI Programs

MPI Portability

Potential deadlock
– you may be assuming that MPI_Send is asynchronous

– it often is buffered for small messages

• but threshhold can vary with implementation

– a correct code should run if you replace all MPI_Send calls

with MPI_Ssend

Buffer space
– cannot assume that there will be space for MPI_Bsend

– default buffer space is often zero!

– be sure to use MPI_Buffer_Attach

• some advice in MPI standard regarding required size

4 Designing MPI Programs

Data Sizes

Cannot assume data sizes or layout
– eg C float / Fortran REAL were 8 bytes on Cray T3E

– can be an issue when defining struct types

– use MPI_Type_extent to find out the number of bytes

• be careful of compiler-dependent padding for structures

Changing precision
– when changing from, say, float to double, must change all

the MPI types from MPI_FLOAT to MPI_DOUBLE as well

Easiest to achieve with an include file
– eg every routine includes precision.h

5 Designing MPI Programs

Changing Precision: C

Define a header file called, eg, precision.h

– typedef float RealNumber

– #define MPI_REALNUMBER MPI_FLOAT

Include in every function
– #include “precision.h”

– ...

– RealNumber x;

– MPI_Routine(&x, MPI_REALNUMBER, ...);

Global change of precision now easy
– edit 2 lines in one file: float -> double, MPI_FLOAT -> MPI_DOUBLE

6 Designing MPI Programs

Changing Precision: Fortran

Define a module called, eg, precision

– integer, parameter :: REALNUMBER=kind(1.0e0)

– integer, parameter :: MPI_REALNUMBER = MPI_REAL

Use in every subroutine
– use precision

– ...

– REAL(kind=REALNUMBER):: x

– call MPI_ROUTINE(x, MPI_REALNUMBER, ...)

Global change of precision now easy
– change 1.0e0 -> 1.0d0, MPI_REAL -> MPI_DOUBLE_PRECISION

7 Designing MPI Programs

Testing Portability

Run on more than one machine
– assuming the implementations are different

– many parallel clusters will use the same open-source MPI

• e.g. OpenMPI or MPICH2

• running on two different mid-sized machines may not be a good test

More than one implementation on same machine
– eg run using both MPICH2 and OpenMPI on your laptop

– very useful test, and can give interesting performance numbers

More than one compiler
– user@morar$ module switch mpich2-pgi mpich2-gcc

8 Designing MPI Programs

Serial Code

Adding MPI can destroy a code
– would like to maintain a serial version

– ie can compile and run identical code without an MPI library

– not simply running MPI code with P=1!

Need to separate off communications routines
– put them all in a separate file

– provide a dummy library for the serial code

– no explicit reference to MPI in main code

9 Designing MPI Programs

Example: Initialisation

! parallel routine

subroutine par_begin(size, procid)

 implicit none

 integer :: size, procid

 include "mpif.h"

 call mpi_init(ierr)

 call mpi_comm_size(MPI_COMM_WORLD, size, ierr)

 call mpi_comm_rank(MPI_COMM_WORLD, procid, ierr)

 procid = procid + 1

end subroutine par_begin

! dummy routine for serial machine

subroutine par_begin(size, procid)

 implicit none

 integer :: size, procid

 size = 1

 procid = 1

end subroutine par_begin

10 Designing MPI Programs

Example: Global Sum

! parallel routine

subroutine par_dsum(dval)

 implicit none

 include "mpif.h"

 double precision :: dval, dtmp

 call mpi_allreduce(dval, dtmp, 1, MPI_DOUBLE_PRECISION, &

 MPI_SUM, comm, ierr)

 dval = dtmp

end subroutine par_dsum

! dummy routine for serial machine

subroutine par_dsum(dval)

 implicit none

 double precision dval

end subroutine par_dsum

11 Designing MPI Programs

Example Makefile

SEQSRC= \

 demparams.f90 demrand.f90 demcoord.f90 demhalo.f90 \

 demforce.f90 demlink.f90 demcell.f90 dempos.f90 demons.f90

MPISRC= \

 demparallel.f90 \

 demcomms.f90

FAKESRC= \

 demfakepar.f90 \

 demfakecomms.f90

#PARSRC=$(FAKESRC)

PARSRC=$(MPISRC)

12 Designing MPI Programs

Advantages of Comms Library

Can compile serial program from same source
– makes parallel code more readable

Enables code to be ported to other libraries
– more efficient but less versatile routines may exist

– eg Cray-specific SHMEM library

– can even choose to only port a subset of the routines

Library can be optimised for different MPIs
– eg choose the fastest send (Ssend, Send, Bsend?)

13 Designing MPI Programs

Design

Separate the communications into a library

Make parallel code similar as possible to serial
– eg use of halos in case study

– could use the same update routine in serial and parallel

 serial: update(new, old, M, N);

 parallel: update(new, old, MP, NP);

– may have a large impact on the design of your serial code

Don’t try and be too clever
– don’t agonise whether one more halo swap is really necessary

– just do it for the sake of robustness

14 Designing MPI Programs

General Considerations

Compute everything everywhere
– eg use routines such as Allreduce

– perhaps the value only really needs to be know on the master

• but using Allreduce makes things simpler

• no serious performance implications

Often easiest to make P a compile-time constant
– may not seem elegant but can make coding much easier

• eg definition of array bounds

– put definition in an include file

– a clever Makefile can reduce the need for recompilation

• only recompile routines that define arrays rather than just use them

• pass array bounds as arguments to all other routines

15 Designing MPI Programs

Debugging

Parallel debugging can be hard

Don’t assume it’s a parallel bug!
– run the serial code first

– then the parallel code with P=1

– then on a small number of processes …

Writing output to separate files can be useful
– eg log.00, log.01, log.02, …. for ranks 0, 1, 2, ...

– need some way easily to switch this on and off

Some parallel debuggers exist
– Totalview is the leader across all largest platforms

– Allinea DDT is becoming more common across the board

16 Designing MPI Programs

General Debugging

People seem to write programs DELIBERATELY to

make them impossible to debug!
– my favourite: the silent program

– “my program doesn’t work”

$ mprun –np 6 ./program.exe

$ SEGV core dumped

– where did this crash?

– did it run for 1 second? 1 hour? in a batch job this may not be obvious

– did it even start at all?

Why don’t people write to the screen!!!

17 Designing MPI Programs

Program should output like this
$ mprun –np 6 ./program.exe

Program running on 6 processes

Reading input file input.dat …

… done

Broadcasting data …

… done

rank 0: x = 3

rank 1: x = 5

etc etc

Starting iterative loop

iteration 100

iteration 200

finished after 236 iterations

writing output file output.dat …

… done

rank 0: finished

rank 1: finished

…

Program finished

18 Designing MPI Programs

Typical mistakes

Don’t write raw numbers to the screen!
– what does this mean?

$ mprun –np 6 ./program.exe

1 3 5.6

3 9 8.37

– programmer has written

$ printf(“%d %d %f\n”, rank, j, x);

$ write(*,*) rank, j, x

Takes an extra 5 seconds to type:
$ printf(“rank, j, x: %d %d %f\n”, rank, j, x);

$ write(*,*) ‘rank, j, x: ‘, rank, j, x

– and will save you HOURS of debugging time

Why oh why do people write raw numbers?!?!

Debugging walkthrough

My case study code gives the wrong answer

Stages:
– read data in

– distribute to processes

– update many times

• requiring halo swaps

– collect data back

– write data out

Final stage shows the error
– but where did it first go wrong?

19 Designing MPI Programs

Common mistake

I changed something
– and it now works (but I don’t know why)

All is OK!

No!
– there is a bug

– you MUST find it

– if not, it will come back later to bite you HARD

Debugging is an experimental science

20 Designing MPI Programs

Where is it going wrong?

On input?

On distribute?

On update?
– on halo swaps?

– on left/right swaps?

– on up/down swaps?

On collection?

On output?

All these can be checked with simple tests

21 Designing MPI Programs

22 Designing MPI Programs

Verification: Is My Code Working?

Should the output be identical for any P?
– very hard to accomplish in practice due to rounding errors

• may have to look hard to see differences in the last few digits

– typically, results vary slightly with number of processes

– need some way of quantifiying the differences from serial code

– and some definition of “acceptable”

What about the same code for fixed P?
– identical output for two runs on same number of processes?

– should be achievable with some care

• not in specific cases like dynamic task farms

• possible problems with global sums

• MPI doesn’t force reproducibility, but some implementations can

– without this, debugging is almost impossible

23 Designing MPI Programs

Parallelisation

Some parallel approaches may be simple
– but not necessarily optimal for performance

– casestudy example is very simple due to 1D decomposition

• but not particularly efficient for large P

– often need to consider what is the realistic range of P

Some people write incredibly complicated code
– step back and ask: what do I actually want to do?

– is there an existing MPI routine or collective communication?

– should I reconsider my approach if it prohibits me from using

existing routines, even if it is not quite so efficient?

24 Designing MPI Programs

Optimisation

Keep running your code
– on a number of input data sets

– with a range of MPI processes

If scaling is poor
– find out what parallel routines are the bottlenecks

– again, much easier with a separate comms library

If performance is poor
– work on the serial code

– return to parallel issues later on

25 Designing MPI Programs

Conclusions

Run on a variety of machines

Keep it simple

Maintain a serial version

Don’t assume all bugs are parallel bugs

Find a debugger you like (good luck to you)

